NALA: a Nesterov accelerated look-ahead optimizer for deep learning

Author:

Zuo Xuan1,Li Hui-Yan2,Gao Shan1,Zhang Pu3,Du Wan-Ru2

Affiliation:

1. School of Automation, Northwestern Polytechnical University, Xi’an, Shaanxi, China

2. China Academy of Aerospace Systems Science and Engineering, Beijing, China

3. School of Automation and Information Engineering, Xi’an University of Technology, Xi’an, Shaanxi, China

Abstract

Adaptive gradient algorithms have been successfully used in deep learning. Previous work reveals that adaptive gradient algorithms mainly borrow the moving average idea of heavy ball acceleration to estimate the first- and second-order moments of the gradient for accelerating convergence. However, Nesterov acceleration which uses the gradient at extrapolation point can achieve a faster convergence speed than heavy ball acceleration in theory. In this article, a new optimization algorithm which combines adaptive gradient algorithm with Nesterov acceleration by using a look-ahead scheme, called NALA, is proposed for deep learning. NALA iteratively updates two sets of weights, i.e., the ‘fast weights’ in its inner loop and the ‘slow weights’ in its outer loop. Concretely, NALA first updates the fast weights k times using Adam optimizer in the inner loop, and then updates the slow weights once in the direction of Nesterov’s Accelerated Gradient (NAG) in the outer loop. We compare NALA with several popular optimization algorithms on a range of image classification tasks on public datasets. The experimental results show that NALA can achieve faster convergence and higher accuracy than other popular optimization algorithms.

Publisher

PeerJ

Reference40 articles.

1. Iterative procedures for nonlinear integral equations;Anderson;Journal of the ACM (JACM),1965

2. Stochastic gradient learning in neural networks;Bottou,1991

3. Adaptive restart for accelerated gradient schemes;Brendan;Foundations of Computational Mathematics,2015

4. Nesterov adam iterative fast gradient method for adversarial attacks;Chen,2022

5. Incorporating Nesterov momentum into adam;Dozat,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3