A hybridizing-enhanced differential evolution for optimization

Author:

Ghasemi Mojtaba1,Zare Mohsen2,Trojovský Pavel3ORCID,Zahedibialvaei Amir4,Trojovská Eva3ORCID

Affiliation:

1. Department of Electronics and Electrical Engineering, Shiraz University of Technology, Shiraz, Iran

2. Department of Electrical Engineering, Jahrom University, Jahrom, Iran

3. Department of Mathematics, Faculty of Science, University of Hradec Králové, Hradec Kralove, Czech Republic

4. Department of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran

Abstract

Differential evolution (DE) belongs to the most usable optimization algorithms, presented in many improved and modern versions in recent years. Generally, the low convergence rate is the main drawback of the DE algorithm. In this article, the gray wolf optimizer (GWO) is used to accelerate the convergence rate and the final optimal results of the DE algorithm. The new resulting algorithm is called Hunting Differential Evolution (HDE). The proposed HDE algorithm deploys the convergence speed of the GWO algorithm as well as the appropriate searching capability of the DE algorithm. Furthermore, by adjusting the crossover rate and mutation probability parameters, this algorithm can be adjusted to pay closer attention to the strengths of each of these two algorithms. The HDE/current-to-rand/1 performed the best on CEC-2019 functions compared to the other eight variants of HDE. HDE/current-to-best/1 is also chosen as having superior performance to other proposed HDE compared to seven improved algorithms on CEC-2014 functions, outperforming them in 15 test functions. Furthermore, jHDE performs well by improving in 17 functions, compared with jDE on these functions. The simulations indicate that the proposed HDE algorithm can provide reliable outcomes in finding the optimal solutions with a rapid convergence rate and avoiding the local minimum compared to the original DE algorithm.

Funder

Excellence Project of the Faculty of Science, University of Hradec Králové, Czech Republic

Publisher

PeerJ

Subject

General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3