A bio-inspired adaptive model for search and selection in the Internet of Things environment

Author:

Bouarourou Soukaina1,Boulaalam Abdelhak2,Nfaoui El Habib1ORCID

Affiliation:

1. Computer Science Department, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco

2. Computer Science Department, National School of Applied Sciences, Sidi Mohamed Ben Abdellah University, Fez, Morocco

Abstract

The Internet of Things (IoT) is a paradigm that can connect an enormous number of intelligent objects, share large amounts of data, and produce new services. However, it is a challenge to select the proper sensors for a given request due to the number of devices in use, the available resources, the restrictions on resource utilization, the nature of IoT networks, and the number of similar services. Previous studies have suggested how to best address this challenge, but suffer from low accuracy and high execution times. We propose a new distributed model to efficiently deal with heterogeneous sensors and select accurate ones in a dynamic IoT environment. The model’s server uses and manages multiple gateways to respond to the request requirements. First, sensors were grouped into three semantic categories and several semantic sensor network types in order to define the space of interest. Second, each type’s sensors were clustered using the Whale-based Sensor Clustering (WhaleCLUST) algorithm according to the context properties. Finally, the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) was improved to search and select the most adequate sensor matching users’ requirements. Experimental results from real data sets demonstrate that our proposal outperforms state-of-the-art approaches in terms of accuracy (96%), execution time, quality of clustering, and scalability of clustering.

Publisher

PeerJ

Subject

General Computer Science

Reference56 articles.

1. Architecting the Internet of Things: state of the art;Abdmeziem;Robots and Sensor Clouds,2016

2. Infrastructure for data processing in large-scale interconnected sensor networks;Aberer,2007

3. Towards a better understanding of context and context-awareness;Abowd,1999

4. Survey-pollution monitoring using IoT;Arora;Procedia Computer Science,2019

5. The Internet of Things: a survey;Atzori;Computer Networks,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3