J-score: a robust measure of clustering accuracy

Author:

Ahmadinejad Navid,Chung Yunro,Liu Li

Abstract

Background Clustering analysis discovers hidden structures in a data set by partitioning them into disjoint clusters. Robust accuracy measures that evaluate the goodness of clustering results are critical for algorithm development and model diagnosis. Common problems of clustering accuracy measures include overlooking unmatched clusters, biases towards excessive clusters, unstable baselines, and difficulties of interpretation. In this study, we presented a novel accuracy measure, J-score, to address these issues. Methods Given a data set with known class labels, J-score quantifies how well the hypothetical clusters produced by clustering analysis recover the true classes. It starts with bidirectional set matching to identify the correspondence between true classes and hypothetical clusters based on Jaccard index. It then computes two weighted sums of Jaccard indices measuring the reconciliation from classes to clusters and vice versa. The final J-score is the harmonic mean of the two weighted sums. Results Through simulation studies and analyses of real data sets, we evaluated the performance of J-score and compared with existing measures. Our results show that J-score is effective in distinguishing partition structures that differ only by unmatched clusters, rewarding correct inference of class numbers, addressing biases towards excessive clusters, and having a relatively stable baseline. The simplicity of its calculation makes the interpretation straightforward. It is a valuable tool complementary to other accuracy measures. We released an R/jScore package implementing the algorithm.

Funder

National Institutes of Health of USA

Publisher

PeerJ

Subject

General Computer Science

Reference23 articles.

1. Comparative analysis of statistical pattern recognition methods in high dimensional settings;Aeberhard;Pattern Recognition,1994

2. J-Score: a robust measure of clustering accuracy;Ahmadinejad,2021

3. The application of unsupervised clustering methods to Alzheimer’s disease;Alashwal;Frontiers in Computational Neuroscience,2019

4. Is normalized mutual information a fair measure for comparing community detection methods?;Amelio,2015

5. The irises of the Gaspe Peninsula;Anderson;Bulletin American Iris Society,1935

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3