Effect of stemming on text similarity for Arabic language at sentence level

Author:

Alhawarat Mohammad O.1ORCID,Abdeljaber Hikmat1ORCID,Hilal Anwer2

Affiliation:

1. Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia

2. General Department, College of Preparatory Year, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia

Abstract

Semantic Text Similarity (STS) has several and important applications in the field of Natural Language Processing (NLP). The Aim of this study is to investigate the effect of stemming on text similarity for Arabic language at sentence level. Several Arabic light and heavy stemmers as well as lemmatization algorithms are used in this study, with a total of 10 algorithms. Standard training and testing data sets are used from SemEval-2017 international workshop for Task 1, Track 1 Arabic (ar–ar). Different features are selected to study the effect of stemming on text similarity based on different similarity measures. Traditional machine learning algorithms are used such as Support Vector Machines (SVM), Stochastic Gradient Descent (SGD) and Naïve Bayesian (NB). Compared to the original text, using the stemmed and lemmatized documents in experiments achieve enhanced Pearson correlation results. The best results attained when using Arabic light Stemmer (ARLSTem) and Farasa light stemmers, Farasa and Qalsadi Lemmatizers and Tashaphyne heavy stemmer. The best enhancement was about 7.34% in Pearson correlation. In general, stemming considerably improves the performance of sentence text similarly for Arabic language. However, some stemmers make results worse than those for original text; they are Khoja heavy stemmer and AlKhalil light stemmer.

Funder

Prince Sattam bin Abdulaziz University

Publisher

PeerJ

Subject

General Computer Science

Reference36 articles.

1. A novel robust arabic light stemmer;Abainia;Journal of Experimental & Theoretical Artificial Intelligence,2017

2. Farasa: A fast and furious segmenter for arabic;Abdelali,2016

3. * Sem 2013 shared task: semantic textual similarity;Agirre,2013

4. N-gram-based techniques for arabic text document matching; case study: courses accreditation;Al-Ramahi;Abhath Al-Yarmouk. Basic Sciences and Engineering,2012

5. Stemming effects on sentiment analysis using large arabic multi-domain resources;Al-Saqqa,2019

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3