A hybrid approach based on k-means and SVM algorithms in selection of appropriate risk assessment methods for sectors

Author:

Topaloglu Fatih1

Affiliation:

1. Computer Engineering/Faculty of Engineering, Malatya Turgut Ozal University, Malatya, Turkey

Abstract

Every work environment contains different types of risks and interactions between risks. Therefore, the method to be used when making a risk assessment is very important. When determining which risk assessment method (RAM) to use, there are many factors such as the types of risks in the work environment, the interactions of these risks with each other, and their distance from the employees. Although there are many RAMs available, there is no RAM that will suit all workplaces and which method to choose is the biggest question. There is no internationally accepted scale or trend on this subject. In the study, 26 sectors, 10 different RAMs and 10 criteria were determined. A hybrid approach has been designed to determine the most suitable RAMs for sectors by using k-means clustering and support vector machine (SVM) classification algorithms, which are machine learning (ML) algorithms. First, the data set was divided into subsets with the k-means algorithm. Then, the SVM algorithm was run on all subsets with different characteristics. Finally, the results of all subsets were combined to obtain the result of the entire dataset. Thus, instead of the threshold value determined for a single and large cluster affecting the entire cluster and being made mandatory for all of them, a flexible structure was created by determining separate threshold values for each sub-cluster according to their characteristics. In this way, machine support was provided by selecting the most suitable RAMs for the sectors and eliminating the administrative and software problems in the selection phase from the manpower. The first comparison result of the proposed method was found to be the hybrid method: 96.63%, k-means: 90.63 and SVM: 94.68%. In the second comparison made with five different ML algorithms, the results of the artificial neural networks (ANN): 87.44%, naive bayes (NB): 91.29%, decision trees (DT): 89.25%, random forest (RF): 81.23% and k-nearest neighbours (KNN): 85.43% were found.

Publisher

PeerJ

Reference40 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3