Critical reflections on three popular computational linguistic approaches to examine Twitter discourses

Author:

Heaton Dan1,Clos Jeremie1,Nichele Elena1,Fischer Joel1

Affiliation:

1. School of Computer Science, University of Nottingham, Nottingham, United Kingdom

Abstract

Although computational linguistic methods—such as topic modelling, sentiment analysis and emotion detection—can provide social media researchers with insights into online public discourses, it is not inherent as to how these methods should be used, with a lack of transparent instructions on how to apply them in a critical way. There is a growing body of work focusing on the strengths and shortcomings of these methods. Through applying best practices for using these methods within the literature, we focus on setting expectations, presenting trajectories, examining with context and critically reflecting on the diachronic Twitter discourse of two case studies: the longitudinal discourse of the NHS Covid-19 digital contact-tracing app and the snapshot discourse of the Ofqual A Level grade calculation algorithm, both related to the UK. We identified difficulties in interpretation and potential application in all three of the approaches. Other shortcomings, such the detection of negation and sarcasm, were also found. We discuss the need for further transparency of these methods for diachronic social media researchers, including the potential for combining these approaches with qualitative ones—such as corpus linguistics and critical discourse analysis—in a more formal framework.

Funder

UKRI Trustworthy Autonomous Systems Hub

Horizon Centre for Doctoral Training at the University of Nottingham

Publisher

PeerJ

Subject

General Computer Science

Reference85 articles.

1. Sentiment analysis of Twitter data;Agarwal,2011

2. Sentiment analysis using common-sense and context information;Agarwal;Computational Intelligence and Neuroscience,2015

3. Sentiment analysis and its applications in fighting COVID-19 and infectious diseases: a systematic review;Alamoodi;Expert Systems with Applications,2021

4. Topic modeling for Twitter users regarding the “Ruanggguru” application;Arianto;Jurnal ILMU DASAR,2020

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3