Image-based effective feature generation for protein structural class and ligand binding prediction

Author:

Sadique Nafees,Ahmed Al Amin Neaz,Islam Md Tajul,Pervage Md. Nawshad,Shatabda Swakkhar

Abstract

Proteins are the building blocks of all cells in both human and all living creatures of the world. Most of the work in the living organism is performed by proteins. Proteins are polymers of amino acid monomers which are biomolecules or macromolecules. The tertiary structure of protein represents the three-dimensional shape of a protein. The functions, classification and binding sites are governed by the protein’s tertiary structure. If two protein structures are alike, then the two proteins can be of the same kind implying similar structural class and ligand binding properties. In this paper, we have used the protein tertiary structure to generate effective features for applications in structural similarity to detect structural class and ligand binding. Firstly, we have analyzed the effectiveness of a group of image-based features to predict the structural class of a protein. These features are derived from the image generated by the distance matrix of the tertiary structure of a given protein. They include local binary pattern (LBP) histogram, Gabor filtered LBP histogram, separate row multiplication matrix with uniform LBP histogram, neighbor block subtraction matrix with uniform LBP histogram and atom bond. Separate row multiplication matrix and neighbor block subtraction matrix filters, as well as atom bond, are our novels. The experiments were done on a standard benchmark dataset. We have demonstrated the effectiveness of these features over a large variety of supervised machine learning algorithms. Experiments suggest support vector machines is the best performing classifier on the selected dataset using the set of features. We believe the excellent performance of Hybrid LBP in terms of accuracy would motivate the researchers and practitioners to use it to identify protein structural class. To facilitate that, a classification model using Hybrid LBP is readily available for use at http://brl.uiu.ac.bd/PL/. Protein-ligand binding is accountable for managing the tasks of biological receptors that help to cure diseases and many more. Therefore, binding prediction between protein and ligand is important for understanding a protein’s activity or to accelerate docking computations in virtual screening-based drug design. Protein-ligand binding prediction requires three-dimensional tertiary structure of the target protein to be searched for ligand binding. In this paper, we have proposed a supervised learning algorithm for predicting protein-ligand binding, which is a similarity-based clustering approach using the same set of features. Our algorithm works better than the most popular and widely used machine learning algorithms.

Publisher

PeerJ

Subject

General Computer Science

Reference32 articles.

1. Instance-based learning algorithms;Aha;Machine Learning,1991

2. Fast prediction and visualization of protein binding pockets with pass;Brady;Journal of Computer-Aided Molecular Design,2000

3. Calorimetry and thermodynamics in drug design;Chaires;Annual Review of Biophysics,2008

4. SMOTE: synthetic minority over-sampling technique;Chawla;Journal of Artificial Intelligence Research,2002

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3