Hybrid computational and real data-based positioning of small cells in 5G networks

Author:

Ferreira Flávio Henry1,José Brito Barros Fabrício1,Neto Miércio Cardoso de Alcântara1ORCID,Cardoso Evelin2,Francês Carlos Renato Lisboa1,Araújo Jasmine1

Affiliation:

1. Post Graduate Program in Electrical Engineering, Institute of Technology of Federal University of Pará, Federal University of Pará, Belém, PA, Brasil

2. Computer Systems Department, Federal Rural University of the Amazon, Capitão Poço, Pará, Brasil

Abstract

One of the key technologies in smart cities is the use of next generation networks such as 5G networks. Mainly because this new mobile technology offers massive connections in densely populated areas in smart cities, thus playing a crucial role for numerous subscribers anytime and anywhere. Indeed, all the most important infrastructure to promote a connected world is being related to next generation networks. Specifically, the small cells transmitters is one of the 5G technologies more relevant to provide more connections and to attend the high demand in smart cities. In this article, a smart small cell positioning is proposed in the context of a smart city. The work proposal aims to do this through the development of a hybrid clustering algorithm with meta-heuristic optimizations to serve users, with real data, of a region satisfying coverage criteria. Furthermore, the problem to be solved will be the best location of the small cells, with the minimization of attenuation between the base stations and its users. The possibilities of using multi-objective optimization algorithms based on bioinspired computing, such as Flower Pollination and Cuckoo Search, will be verified. It will also be analyzed by simulation which power values would allow the continuity of the service with emphasis on three 5G spectrums used around the world: 700 MHz, 2.3 GHz and 3.5 GHz.

Funder

Coordination for the Improvement of Higher Education Personnel—CAPES

National Council for Scientific and Technological Development—CNPq

Qualified Production—PROPESP/UFPA

Publisher

PeerJ

Subject

General Computer Science

Reference57 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3