Enhancing semantic belief function to handle decision conflicts in SoS using k-means clustering

Author:

Elsayed Eman K.12ORCID,Ahmed Ahmed Sharaf Eldin34ORCID,Younes Hebatullah Rashed3ORCID

Affiliation:

1. Mathematical and Computer Science Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo, Egypt

2. Computer Science Department, Faculty of Information Technology, Misr University for Science and Technology (MUST), Giza, Egypt

3. Information Technology Department, Faculty of Information Technology and Computer Science, Sinai University, Arish, Egypt

4. Information Systems Department, Faculty of Computers and Artificial Intelligence, Helwan University, Cairo, Egypt

Abstract

Background The endeavouring to offer complex special functions from individual systems gave rise to what is known as the System of Systems (SoS). SoS co-integrating systems together while allowing for absorbing more systems in the future. SoS as an integrated system simplifies operations, reduces costs, and ensures efficiency. However, conflict may result while co-integrating systems, violating the main benefits of SoS. This paper is concerned with enhancing the time required to detect and solve such conflicts. Methods We adopted the k-means clustering technique to enhance the detection and solving of conflict resulting while co-integrating new systems into an existing SoS. Instead of dealing with SoS as a single entity, we partition it into clusters. Each cluster contains nearby systems according to pre-specified criteria. We can consider each cluster a Sub SoS (S-SoS). By doing so, the conflict that may arise while co-integrating new systems can be detected and solved in a shorter time. We propose the Smart Semantic Belief Function Clustered System of Systems (SSBFCSoS), which is an enhancement of the Ontology Belief Function System of Systems (OBFSoS). Results The proposed method proved the ability to rapidly detect and resolve conflicts. It showed the ability to accommodate more systems as well, therefore achieving the objectives of SoS. In order to test the applicability of the SSBFCSoS and compare its performance with other approaches, two datasets were employed. They are (Glest & StarCraft Brood War). With each dataset, 15 test cases were examined. We achieved, on average, 89% in solving the conflict compared to 77% for other approaches. Moreover, it showed an acceleration of up to proportionality over previous approaches for about 16% in solving conflicts as well. Besides, it reduced the frequency of the same conflicts by approximately 23% better than the other method, not only in the same cluster but even while combining different clusters.

Publisher

PeerJ

Subject

General Computer Science

Reference41 articles.

1. Computational intelligence based complex adaptive system-of-system architecture evolution strategy;Agarwal,2016

2. Clustering algorithm for distributed real-time database sites;Ahmed;International Journal of Computers and Information,2015

3. Analysis of k-means and k-medoids algorithm for big data;Arora;Procedia Computer Science,2016

4. Exploring big data clustering algorithms for internet of things applications;Bangui,2018

5. System-of-systems security engineering;Bodeau,1994

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3