Detection of cyberhate speech towards female sport in the Arabic Xsphere

Author:

Alhayan Fatimah1,Almobarak Monerah1,Shalabi Hawazen1,Alshubaili Luluwah1,Albatati Renad1,Alqahtani Wafa1,Alhaidari Nofe1

Affiliation:

1. Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia

Abstract

The recent rapid growth in the number of Saudi female athletes and sports enthusiasts’ presence on social media has exposed them to gender-hate speech and discrimination. Hate speech, a harmful worldwide phenomenon, can have severe consequences. Its prevalence in sports has surged alongside the growing influence of social media, with X serving as a prominent platform for the expression of hate speech and discriminatory comments, often targeting women in sports. This research combines two studies that explores online hate speech and gender biases in the context of sports, proposing an automated solution for detecting hate speech targeting women in sports on platforms like X, with a particular focus on Arabic, a challenging domain with limited prior research. In Study 1, semi-structured interviews with 33 Saudi female athletes and sports fans revealed common forms of hate speech, including gender-based derogatory comments, misogyny, and appearance-related discrimination. Building upon the foundations laid by Study 1, Study 2 addresses the pressing need for effective interventions to combat hate speech against women in sports on social media by evaluating machine learning (ML) models for identifying hate speech targeting women in sports in Arabic. A dataset of 7,487 Arabic tweets was collected, annotated, and pre-processed. Term frequency-inverse document frequency (TF-IDF) and part-of-speech (POS) feature extraction techniques were used, and various ML algorithms were trained Random Forest consistently outperformed, achieving accuracy (85% and 84% using TF-IDF and POS, respectively) compared to other methods, demonstrating the effectiveness of both feature sets in identifying Arabic hate speech. The research contribution advances the understanding of online hate targeting Arabic women in sports by identifying various forms of such hate. The systematic creation of a meticulously annotated Arabic hate speech dataset, specifically focused on women’s sports, enhances the dataset’s reliability and provides valuable insights for future research in countering hate speech against women in sports. This dataset forms a strong foundation for developing effective strategies to address online hate within the unique context of women’s sports. The research findings contribute to the ongoing efforts to combat hate speech against women in sports on social media, aligning with the objectives of Saudi Arabia’s Vision 2030 and recognizing the significance of female participation in sports.

Funder

Princess Nourah bint Abdulrahman University Researchers Supporting Project

Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia

Publisher

PeerJ

Reference50 articles.

1. Quick and simple approach for detecting hate speech in Arabic tweets;Abuzayed,2020

2. Detection of hate speech in Arabic tweets using deep learning;Al-Hassan;Multimedia Systems,2022

3. The reality of women’s sport in Saudi society;Al-Shahrani;International Journal of Human Movement and Sports Sciences,2020

4. ALP: an Arabic linguistic pipeline;Abed Alhakim;Analysis and Application of Natural Language and Speech Processing,2022

5. A comparative study of Arabic part of speech taggers using literary text samples from Saudi novels;Alluhaibi;Information,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3