Combined spatial and frequency dual stream network for face forgery detection

Author:

Zhao Hui12,Li Xin12ORCID,Xu Bingxin12,Liu Hongzhe12

Affiliation:

1. Department of Robotics, Beijing Union University, Beijing, China

2. Beijing Key Laboratory of Information Service Engineering, Beijing Union University, Beijing, China

Abstract

With the development of generative model, the cost of facial manipulation and forgery is becoming lower and lower. Fraudulent data has brought numerous hidden threats in politics, privacy, and cybersecurity. Although many methods of face forgery detection focus on the learning of high frequency forgery traces and achieve promising performance, these methods usually learn features in spatial and frequency independently. In order to combine the information of the two domains, a combined spatial and frequency dual stream network is proposed for face forgery detection. Concretely, a cross self-attention (CSA) module is designed to improve frequency feature interaction and fusion at different scales. Moreover, to augment the semantic and contextual information, frequency guided spatial feature extraction module is proposed to extract and reconstruct the spatial information. These two modules deeply mine the forgery traces via a dual-stream collaborative network. Through comprehensive experiments on different datasets, we demonstrate the effectiveness of proposed method for both within and cross datasets.

Funder

National Natural Science Foundation of China

Publisher

PeerJ

Reference37 articles.

1. End-to-end reconstruction-classification learning for face forgery detection;Cao,2022

2. Local relation learning for face forgery detection;Chen;Proceedings of the AAAI Conference on Artificial Intelligence,2021

3. Xception: deep learning with depthwise separable convolutions;Chollet,2017

4. Generative adversarial networks: an overview;Creswell;IEEE Signal Processing Magazine,2018

5. The deepfake detection challenge (dfdc) dataset;Dolhansky,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3