SUTrans-NET: a hybrid transformer approach to skin lesion segmentation

Author:

Li Yaqin1,Tian Tonghe1,Hu Jing1,Yuan Cao1

Affiliation:

1. School of Mathematics and Computer Science, Wuhan Polytechnic University School, Wuhan, Hubei, China

Abstract

Melanoma is a malignant skin tumor that threatens human life and health. Early detection is essential for effective treatment. However, the low contrast between melanoma lesions and normal skin and the irregularity in size and shape make skin lesions difficult to detect with the naked eye in the early stages, making the task of skin lesion segmentation challenging. Traditional encoder-decoder built with U-shaped networks using convolutional neural network (CNN) networks have limitations in establishing long-term dependencies and global contextual connections, while the Transformer architecture is limited in its application to small medical datasets. To address these issues, we propose a new skin lesion segmentation network, SUTrans-NET, which combines CNN and Transformer in a parallel fashion to form a dual encoder, where both CNN and Transformer branches perform dynamic interactive fusion of image information in each layer. At the same time, we introduce our designed multi-grouping module SpatialGroupAttention (SGA) to complement the spatial and texture information of the Transformer branch, and utilize the Focus idea of YOLOV5 to construct the Patch Embedding module in the Transformer to prevent the loss of pixel accuracy. In addition, we design a decoder with full-scale information fusion capability to fully fuse shallow and deep features at different stages of the encoder. The effectiveness of our method is demonstrated on the ISIC 2016, ISIC 2017, ISIC 2018 and PH2 datasets and its advantages over existing methods are verified.

Publisher

PeerJ

Reference64 articles.

1. Lesion border detection in dermoscopy images using dynamic programming;Abbas;Skin Research and Technology,2011

2. CMM-Net: contextual multi-scale multi-level network for efficient biomedical image segmentation;Al-Masni;Scientific Reports,2021

3. Recurrent residual convolutional neural network based on U-Net (R2U-Net) for medical image segmentation;Alom,2018

4. A hybrid dermoscopy images segmentation approach based on neutrosophic clustering and histogram estimation;Ashour;Applied Soft Computing,2018

5. Joint line segmentation and transcription for end-to-end handwritten paragraph recognition;Bluche;Advances in Neural Information Processing Systems,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3