A novel multi-class imbalanced EEG signals classification based on the adaptive synthetic sampling (ADASYN) approach

Author:

Alhudhaif AdiORCID

Abstract

Background Brain signals (EEG—Electroencephalography) are a gold standard frequently used in epilepsy prediction. It is crucial to predict epilepsy, which is common in the community. Early diagnosis is essential to reduce the treatment process of the disease and to keep the process healthier. Methods In this study, a five-classes dataset was used: EEG signals from different individuals, healthy EEG signals from tumor document, EEG signal with epilepsy, EEG signal with eyes closed, and EEG signal with eyes open. Four different methods have been proposed to classify five classes of EEG signals. In the first approach, the EEG signal was first divided into four different bands (beta, alpha, theta, and delta), and then 25 time-domain features were extracted from each band, and the main EEG signal and these extracted features were combined to obtain 125-time domain features (feature extraction). Using the Random Forests classifier, EEG activities were classified into five classes. In the second approach, each One-Against-One (OVO) approach with 125 attributes was split into ten parts, pairwise, and then each piece was classified with the Random Forests classifier. The majority voting scheme was used to combine decisions from the ten classifiers. In the third proposed method, each One-Against-All (OVA) approach with 125 attributes was divided into five parts, and then each piece was classified with the Random Forests classifier. The majority voting scheme was used to combine decisions from the five classifiers. In the fourth proposed approach, each One-Against-All (OVA) approach with 125 attributes was divided into five parts. Since each piece obtained had an imbalanced data distribution, an adaptive synthetic (ADASYN) sampling approach was used to stabilize each piece. Then, each balanced piece was classified with the Random Forests classifier. To combine the decisions obtanied from each classifier, the majority voting scheme has been used. Results The first approach achieved 71.90% classification success in classifying five-class EEG signals. The second approach achieved a classification success of 91.08% in classifying five-class EEG signals. The third method achieved 89% success, while the fourth proposed approach achieved 91.72% success. The results obtained show that the proposed fourth approach (the combination of the ADASYN sampling approach and Random Forest Classifier) achieved the best success in classifying five class EEG signals. This proposed method could be used in the detection of epilepsy events in the EEG signals.

Funder

Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia

Publisher

PeerJ

Subject

General Computer Science

Reference30 articles.

1. Automatic detection of epileptiform events in EEG by a three-stage procedure based on artificial neural networks;Acir;IEEE Transactions on Biomedical Engineering,2005

2. Multi-category EEG signal classification developing time-frequency texture features based Fisher vector encoding method;Alçіn Ömer;Neurocomputing,2016

3. Binary particle swarm optimization (BPSO) based channel selection in the EEG signals and its application to speller systems;Arican;Journal of Artificial Intelligence and Systems,2020

4. Random forests;Breiman;Machine Learning,2001

5. A unified framework and method for EEG-based early epileptic seizure detection and epilepsy diagnosis;Chen,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3