Syntactic- and morphology-based text augmentation framework for Arabic sentiment analysis

Author:

Duwairi Rehab1,Abushaqra Ftoon2

Affiliation:

1. Department of Computer Information Systems, Jordan University of Science and Technology, Irbid, Jordan

2. Department of Computer Science, Jordan University of Science and Technology, Irbid, Jordan

Abstract

Arabic language is a challenging language for automatic processing. This is due to several intrinsic reasons such as Arabic multi-dialects, ambiguous syntax, syntactical flexibility and diacritics. Machine learning and deep learning frameworks require big datasets for training to ensure accurate predictions. This leads to another challenge faced by researches using Arabic text; as Arabic textual datasets of high quality are still scarce. In this paper, an intelligent framework for expanding or augmenting Arabic sentences is presented. The sentences were initially labelled by human annotators for sentiment analysis. The novel approach presented in this work relies on the rich morphology of Arabic, synonymy lists, syntactical or grammatical rules, and negation rules to generate new sentences from the seed sentences with their proper labels. Most augmentation techniques target image or video data. This study is the first work to target text augmentation for Arabic language. Using this framework, we were able to increase the size of the initial seed datasets by 10 folds. Experiments that assess the impact of this augmentation on sentiment analysis showed a 42% average increase in accuracy, due to the reliability and the high quality of the rules used to build this framework.

Funder

Jordan University of Science and Technology, Jordan

Publisher

PeerJ

Subject

General Computer Science

Reference71 articles.

1. Speech recognition challenge in the wild: Arabic MGB-3;Ahmed,2017

2. Automatic extraction of ontological relations from Arabic text;Al Zamil;Journal of King Saud University—Computer and Information Sciences,2014

3. A comprehensive survey of Arabic sentiment analysis;Al-Ayyoub;Information Processing & Management,2019

4. Survey on Arabic sentiment analysis in Twitter;Al-Humoud;International Science Index,2015

5. Arabic language: historic and sociolinguistic characteristics;Al-Huri;English Literature and Language Review,2015

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3