Robust clothing-independent gait recognition using hybrid part-based gait features

Author:

Gao Zhipeng1,Wu Junyi1,Wu Tingting1,Huang Renyu1,Zhang Anguo23,Zhao Jianqiang1

Affiliation:

1. Xiamen Meiya Pico Information Co., Ltd., Xiamen, Fujian, China

2. College of Mathematics and Data Science, Minjiang University, Fuzhou, China

3. College of Physics and Information Engineering, Fuzhou University, Fuzhou, China

Abstract

Recently, gait has been gathering extensive interest for the non-fungible position in applications. Although various methods have been proposed for gait recognition, most of them can only attain an excellent recognition performance when the probe and gallery gaits are in a similar condition. Once external factors (e.g., clothing variations) influence people’s gaits and changes happen in human appearances, a significant performance degradation occurs. Hence, in our article, a robust hybrid part-based spatio-temporal feature learning method is proposed for gait recognition to handle this cloth-changing problem. First, human bodies are segmented into the affected and non/less unaffected parts based on the anatomical studies. Then, a well-designed network is proposed in our method to formulate our required hybrid features from the non/less unaffected body parts. This network contains three sub-networks, aiming to generate features independently. Each sub-network emphasizes individual aspects of gait, hence an effective hybrid gait feature can be created through their concatenation. In addition, temporal information can be used as complement to enhance the recognition performance, a sub-network is specifically proposed to establish the temporal relationship between consecutive short-range frames. Also, since local features are more discriminative than global features in gait recognition, in this network a sub-network is specifically proposed to generate features of local refined differences. The effectiveness of our proposed method has been evaluated by experiments on the CASIA Gait Dataset B and OU-ISIR Treadmill Gait Dataset B. Related experiments illustrate that compared with other gait recognition methods, our proposed method can achieve a prominent result when handling this cloth-changing gait recognition problem.

Funder

Major Science and Technology Project of State Development and Investment Group CO., Ltd.

Publisher

PeerJ

Subject

General Computer Science

Reference60 articles.

1. Clothing invariant human gait recognition using modified local optimal oriented pattern binary descriptor;Anusha;Multimedia Tools and Applications,2019

2. TGLSTM: a time based graph deep learning approach to gait recognition;Battistone;Pattern Recognition Letters,2019

3. On using gait in forensic biometrics;Bouchrika;Journal of Forensic Sciences,2011

4. GaitSet: regarding gait as a set for cross-view gait recognition;Chao,2019

5. Multi-gait recognition based on attribute discovery;Chen;IEEE Transactions on Pattern Analysis and Machine Intelligence,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Human gait recognition: A systematic review;Multimedia Tools and Applications;2023-03-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3