A method of water resources accounting based on deep clustering and attention mechanism under the background of integration of public health data and environmental economy

Author:

Zhou Shiya

Abstract

Water resource accounting constitutes a fundamental approach for implementing sophisticated management of basin water resources. The quality of water plays a pivotal role in determining the liabilities associated with these resources. Evaluating the quality of water facilitates the computation of water resource liabilities during the accounting process. Traditional accounting methods rely on manual sorting and data analysis, which necessitate significant human effort. In order to address this issue, we leverage the remarkable feature extraction capabilities of convolutional operations to construct neural networks. Moreover, we introduce the self-attention mechanism module to propose an unsupervised deep clustering method. This method offers assistance in accounting tasks by automatically classifying the debt levels of water resources in distinct regions, thereby facilitating comprehensive water resource accounting. The methodology presented in this article underwent verification using three datasets: the United States Postal Service (USPS), Heterogeneity Human Activity Recognition (HHAR), and Association for Computing Machinery (ACM). The evaluation of Accuracy rate (ACC), Normalized Mutual Information (NMI), and Adjusted Rand Index (ARI) metrics yielded favorable results, surpassing those of K-means clustering, hierarchical clustering, and Density-based constraint extension (DCE). Specifically, the mean values of the evaluation metrics across the three datasets were 0.8474, 0.7582, and 0.7295, respectively.

Funder

Research on the Influence of Block Chain Technology on the Whole Audit Process under the Background of Big Intelligence Moving Cloud

Publisher

PeerJ

Subject

General Computer Science

Reference26 articles.

1. Unsupervised hyperspectral microscopic image segmentation using deep embedded clustering algorithm;Ajay;Scanning,2022

2. Semi-supervised kernel mean shift clustering;Anand;IEEE Transactions on Pattern Analysis and Machine Intelligence,2013

3. Efficient agglomerative hierarchical clustering;Bouguettaya;Expert Systems with Applications,2015

4. A density-based spatial clustering of application with noise;Bäcklund;Data Mining,2011

5. Text preprocessing for unsupervised learning: why it matters, when it misleads, and what to do about it;Denny;Political Analysis,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3