Loitering behavior detection by spatiotemporal characteristics quantification based on the dynamic features of Automatic Identification System (AIS) messages

Author:

Wijaya Wayan Mahardhika1,Nakamura Yasuhiro2

Affiliation:

1. Graduate School of Science and Engineering, National Defense Academy of Japan, Yokosuka, Kanagawa, Japan

2. Computer Science, National Defense Academy of Japan, Yokosuka, Kanagawa, Japan

Abstract

The capability of the Automatic Identification System (AIS) to provide real-time worldwide coverage of ship tracks has made it possible for maritime authorities to utilize AIS as a means of surveillance to identify anomalies. Anomaly detection in maritime traffic is crucial as anomalous behavior may be a sign of either emergencies or illegal activities. Anomalous ships are recognized based on their behavior by manual examination. Such work requires extensive effort, especially for nationwide surveillance. To deal with this, researchers proposed computational methods to analyze vessel behavior. However, most approaches are region-dependent and require a profile of normality to detect anomalies, and amongst the six types of anomaly, loitering is the least explored. Loitering is not necessarily anomalous behavior as it is common for certain types of ships, such as pilot boats and research vessels. However, tankers and cargo ships normally do not engage in loitering. Based on 12-month manually examined data, nearly 60% of the identified anomalies were loitering, particularly for those of types cargo and tanker. Although manual identification is inefficient, automatically identifying abnormal vessels by merely implementing computing algorithms is not yet feasible. It still needs subject matter experts’ assessments. This study proposes a region-independent method to automatically detect loitering without training normal instances and produces a ranked list of loitering vessels to facilitate further anomaly investigation. First, the loitering spatiotemporal characteristics are defined: (1) movement of frequent course change, with a certain speed, within a certain spatial range, (2) movement of frequent course change within traversed geodetic distance, (3) might demonstrate frequent extreme turning, and (4) extreme turning produces a significant discrepancy between the course over ground and the heading of the ship. Then, the characteristics are quantified by manipulating the dynamic information of AIS messages. Finally, the parameters to determine a loitering trajectory are formulated by comparing the rate of course change, speed, and the discrepancy between heading and course with the area of spatial range enclosing the trajectory and the geodetic distance between the start and end point. The loitering score of each trajectory is calculated with the parameters, and the Isolation Forest algorithm is employed to establish a threshold and rank. Then, geographic visualization is created for intuitive evaluation. An experiment was conducted on a real-world dataset covering a sea area of 610,116.37 km2. The results prove the efficacy of the proposed method. It remarkably outperforms the existing approach with 97% accuracy and 92% F-score. The experiment produces a ranked list of loitering vessels and an intuitive visualization in the relevant geographic area. In the realworld scenario, they are practical means to support further examination by human operators.

Publisher

PeerJ

Subject

General Computer Science

Reference33 articles.

1. Maritime mobile service identity;BoatUS,2023

2. GeoPy;Dubrava,2018

3. The 2021 World Merchant Fleet Statistics from Equasis;Equasis,2021

4. A density-based algorithm for discovering clusters in large spatial databases with noise;Ester,1996

5. Maritime mobile service identities—MMSI;Federal Communications Commission (FCC),2022

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AIS-based kinematic anomaly classification for maritime surveillance;Ocean Engineering;2024-08

2. Mobility Data Mining: the Maritime Use Case;2024 11th International Workshop on Metrology for AeroSpace (MetroAeroSpace);2024-06-03

3. Ship Navigational Status Classification Based on the Geometrical and Spatiotemporal Features of the AIS-Generated Trajectory;2024 9th International Conference on Big Data Analytics (ICBDA);2024-03-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3