Research on the evaluation method of English textbook readability based on the TextCNN model and its application in teaching design

Author:

Qin Ying1,Irshad Azeem2

Affiliation:

1. School of Foreign Languages, Wuzhou University, Wuzhou, China

2. Department of Computer Science and Software Engineering, International Islamic University, Islamabad, Pakistan

Abstract

English is a world language, and the ability to use English plays an important role in the improvement of college students’ comprehensive quality and career development. However, quite a lot of Chinese college students feel that English learning is difficult; it is difficult to understand the learning materials, and they cannot effectively improve their English ability. This study uses a convolutional neural network to evaluate the readability of English reading materials. It provides students with English reading materials of suitable difficulty based on their English reading ability so as to improve the effect of English learning. Aiming at the high dispersion of students’ English reading level, a text readability evaluation model for English reading textbooks based on deep learning is designed. First, the legibility dataset is constructed based on college English textbooks; second, the TextCNN text legibility evaluation model is constructed; finally, the model training is completed through parameter adjustment and optimization, and the evaluation accuracy rate on the self-built dataset reaches 90%. We use the text readability method based on TextCNN model to conduct experimental teaching, and divided the two groups into comparative experiments. The experimental results showed that the reading level and reading interest of students in the experimental group were significantly improved, which proved that the text readability evaluation method based on deep learning was scientific and effective. In addition, we will further expand the capacity of the English legibility dataset and invite more university classes and students to participate in comparative experiments to improve the generality of the model.

Publisher

PeerJ

Reference38 articles.

1. Exploration and practice of college English reading teaching reform in the context of deep learning;Chen;Applied Mathematics and Nonlinear Sciences,2023

2. Council of chief state school officers, national governors association center for best practices common core state standards for English language arts & literacy in history/social studies, science, and technical subjects;Common Core State Standards Initiative,2020

3. The concept of readability;Dale;Elementary English,1949

4. A formula for predicting readability;Dale;Educational Research Bulletin,1948

5. Component latent trait models for paragraph comprehension tests;Embretson;Applied Psychological Measurement,1987

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3