GPUTreeShap: massively parallel exact calculation of SHAP scores for tree ensembles

Author:

Mitchell Rory1,Frank Eibe2,Holmes Geoffrey2

Affiliation:

1. Nvidia, Santa Clara, United States

2. University of Waikato, Hamilton, New Zealand

Abstract

SHapley Additive exPlanation (SHAP) values (Lundberg & Lee, 2017) provide a game theoretic interpretation of the predictions of machine learning models based on Shapley values (Shapley, 1953). While exact calculation of SHAP values is computationally intractable in general, a recursive polynomial-time algorithm called TreeShap (Lundberg et al., 2020) is available for decision tree models. However, despite its polynomial time complexity, TreeShap can become a significant bottleneck in practical machine learning pipelines when applied to large decision tree ensembles. Unfortunately, the complicated TreeShap algorithm is difficult to map to hardware accelerators such as GPUs. In this work, we present GPUTreeShap, a reformulated TreeShap algorithm suitable for massively parallel computation on graphics processing units. Our approach first preprocesses each decision tree to isolate variable sized sub-problems from the original recursive algorithm, then solves a bin packing problem, and finally maps sub-problems to single-instruction, multiple-thread (SIMT) tasks for parallel execution with specialised hardware instructions. With a single NVIDIA Tesla V100-32 GPU, we achieve speedups of up to 19× for SHAP values, and speedups of up to 340× for SHAP interaction values, over a state-of-the-art multi-core CPU implementation executed on two 20-core Xeon E5-2698 v4 2.2 GHz CPUs. We also experiment with multi-GPU computing using eight V100 GPUs, demonstrating throughput of 1.2 M rows per second—equivalent CPU-based performance is estimated to require 6850 CPU cores.

Publisher

PeerJ

Subject

General Computer Science

Reference40 articles.

1. Parallelism and greedy algorithms;Anderson,1984

2. Parallel approximation algorithms for bin packing;Anderson;Information and Computation,1989

3. Comparison of neural networks and discriminant analysis in predicting forest cover types;Blackard,1998

4. Solving knapsack problems on GPU;Boyer;Computers & Operations Research,2012

5. XGBoost: a scalable tree boosting system;Chen,2016

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3