Research on three-state reliability evaluation method of high reliability system based on multi-source prior information

Author:

Huang Jingde1,Huang Zhangyu2,Zhan Xin3

Affiliation:

1. Guangdong Intelligent Vision Precision Detection Engineering Technology Research Center, Zhuhai College of Science and Technology, Zhuhai, China

2. Faculty of Innovation Engineering, Macau University of Science and Technology, Macau, China

3. School of Mechanical Engineering, Zhuhai College of Science and Technology, Zhuhai, China

Abstract

A high reliability system has the characteristics of complexity, modularization, high cost and small sample size. Throughout the entire lifecycle of system development, storage and use, the high reliability requirements and the risk analysis form a direct contradiction with the testing expenses. In order to ensure the system, module or component maintains good reliability status and effectively reduces the cost of sampling tests, it is necessary to make full use of multi-source prior information to evaluate its reliability. Therefore, in order to evaluate the reliability of highly reliable equipment under the condition of a small sample size correctly, the equipment reliability evaluation model should be built based on multi-source prior information and form scientific computing methods to meet the needs of condition evaluation and fund assurance of high reliability system. In engineering practice, high reliability system or module gradually develops from normal state to failure state, generally going through three working states of “safety-potential failure-functional failure”. Firstly, the historical test data under the three states can be used for the data source for the reliability evaluation of the system at the current stage, which supplements the deficiency of the field data; secondly, due to the lack of accurate judgment on the working state of a high reliability system or modules and analysis of the health status, the unnecessary maintenance may aggravate the evolution speed from potential failure to functional failure; thirdly, when high reliability system or module operates under overload or harsh conditions, the potential failure will be worsened to a certain extent. Aiming at the difficulty of multi-state system reliability evaluation, a reliability evaluation method based on non-information prior distribution is proposed by fusing multi-source prior information, which provides ideas and methods for reliability evaluation and optimization analysis of high reliability system or module. The results show that the three-state reliability evaluation method proposed in this article is consistent with the actual engineering situation, providing a scientific theoretical basis for preventive maintenance of high reliability system. At the same time, the research method not only helps evaluate the reliability state of a high reliability system accurately, but also achieves the goal of effectively reducing test costs with good economic benefits and engineering application value.

Funder

The Key Special Foundation of Universities in Guangdong Province, China

Publisher

PeerJ

Subject

General Computer Science

Reference39 articles.

1. Natural gas pipeline failure risk prediction and relation analysis by combining rough-AHP and rough DEMATEL method;Ahmed,2020

2. Dynamic reliability modeling of three-state networks;Ashrafi;Journal of Applied Probablity,2014

3. Bayesian methods for cancer phase I clinical trials;Babb,2004

4. UAV maneuvering decision-making algorithm based on twin delayed deep deterministic policy gradient algorithm;Bai;Journal of Artificial Intelligence and Technology,2021

5. Exact nonparametric inference for component lifetime distribution based on lifetime data from systems with known signatures;Balakrishnan;Jouranl of Nonpametric Statistics,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3