Bidirectional k-nearest neighbor spatial crowdsourcing allocation protocol based on edge computing

Author:

Zhang Jing1,Ding Qian1,Li Biao1,Ye Xiucai2

Affiliation:

1. School of Computer Science and Mathematics, Fujian Provincial Key Laboratory of Big Data Mining and Applications, Fujian University of Technology, Fuzhou, Fujian, China

2. Department of Computer Science, University of Tsukuba, Tsukuba, Japan

Abstract

Spatial crowdsourcing refers to the allocation of crowdsourcing workers to each task based on location information. K-nearest neighbor technology has been widely applied in crowdsourcing applications for crowdsourcing allocation. However, there are still several issues need to be stressed. Most of the existing spatial crowdsourcing allocation schemes operate on a centralized framework, resulting in low efficiency of crowdsourcing allocation. In addition, these spatial crowdsourcing allocation schemes are one-way allocation, that is, the suitable matching objects for each task can be queried from the set of crowdsourcing workers, but cannot query in reverse. In this article, a bidirectional k-nearest neighbor spatial crowdsourcing allocation protocol based on edge computing (BKNN-CAP) is proposed. Firstly, a spatial crowdsourcing task allocation framework based on edge computing (SCTAFEC) is established, which can offload all tasks to edge nodes in edge computing layer to realize parallel processing of spatio-temporal queries. Secondly, the positive k-nearest neighbor spatio-temporal query algorithm (PKNN) and reverse k-nearest neighbor spatio-temporal query algorithm (RKNN) are proposed to make the task publishers and crowdsourcing workers conduct two-way query. In addition, a road network distance calculation method is proposed to improve the accuracy of Euclidean distance in spatial query scenarios. Experimental results show that the proposed protocol has less time cost and higher matching success rate compared with other ones.

Funder

The National Natural Science Foundation of China

Natural Science Foundation of Fujian Province of China

Publisher

PeerJ

Subject

General Computer Science

Reference39 articles.

1. Hierarchical graph traversal for aggregate k nearest neighbors search in road networks;Abeywickrama,2020

2. General framework, opportunities and challenges for crowdsourcing techniques: a comprehensive survey;Bhatti;Journal of Systems and Software,2020

3. An efficient continuous k-nearest neighbor query processing scheme for multimedia data sharing and transmission in location based services;Bok;Multimedia Tools and Applications,2019

4. Minimizing maximum delay of task assignment in spatial crowdsourcing;Chen,2019

5. Efficient exact k-flexible aggregate nearest neighbor search in road networks using the M-tree;Chung;The Journal of Supercomputing,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3