A knowledge graph embedding model based attention mechanism for enhanced node information integration

Author:

Liu Ying12,Wang Peng13,Yang Di1,Qiu Ningjia1

Affiliation:

1. School of Computer Science and Technology, Changchun University of Science and Technology, Changchun, China

2. School of Computer Science, Tonghua Normal University, Tonghua, China

3. Changchun University of Science and Technology Chongqing Research Institute, Chongqing, China

Abstract

The purpose of knowledge embedding is to extract entities and relations from the knowledge graph into low-dimensional dense vectors, in order to be applied to downstream tasks, such as connection prediction and intelligent classification. Existing knowledge embedding methods still have many limitations, such as the contradiction between the vast amount of data and limited computing power, and the challenge of effectively representing rare entities. This article proposed a knowledge embedding learning model, which incorporates a graph attention mechanism to integrate key node information. It can effectively aggregate key information from the global graph structure, shield redundant information, and represent rare nodes in the knowledge base independently of its own structure. We introduce a relation update layer to further update the relation based on the results of entity training. The experiment shows that our method matches or surpasses the performance of other baseline models in link prediction on the FB15K-237 dataset. The metric Hits@1 has increased by 10.9% compared to the second-ranked baseline model. In addition, we conducted further analysis on rare nodes with fewer neighborhoods, confirming that our model can embed rare nodes more accurately than the baseline models.

Publisher

PeerJ

Reference32 articles.

1. Freebase: a collaboratively created graph database for structuring human knowledge;Bollacker,2008

2. Question answering with subgraph embeddings. Computer Science;Bordes,2014

3. Joint learning of words and meaning representations for open-text semantic parsing;Bordes,2012

4. Translating embeddings for modeling multi-relational data;Bordes,2013

5. Open question answering with weakly supervised embedding models;Bordes,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3