Backlight and dim space object detection based on a novel event camera

Author:

Zhou Xiaoli12,Bei Chao2

Affiliation:

1. Graduate School, The Second Research Academy of CASIC, Beijing, China

2. CASIC Space Engineering Development Co., Ltd., Beijing, China

Abstract

Background For space object detection tasks, conventional optical cameras face various application challenges, including backlight issues and dim light conditions. As a novel optical camera, the event camera has the advantages of high temporal resolution and high dynamic range due to asynchronous output characteristics, which provides a new solution to the above challenges. However, the asynchronous output characteristic of event cameras makes them incompatible with conventional object detection methods designed for frame images. Methods Asynchronous convolutional memory network (ACMNet) for processing event camera data is proposed to solve the problem of backlight and dim space object detection. The key idea of ACMNet is to first characterize the asynchronous event streams with the Event Spike Tensor (EST) voxel grid through the exponential kernel function, then extract spatial features using a feed-forward feature extraction network, and aggregate temporal features using a proposed convolutional spatiotemporal memory module ConvLSTM, and finally, the end-to-end object detection using continuous event streams is realized. Results Comparison experiments among ACMNet and classical object detection methods are carried out on Event_DVS_space7, which is a large-scale space synthetic event dataset based on event cameras. The results show that the performance of ACMNet is superior to the others, and the mAP is improved by 12.7% while maintaining the processing speed. Moreover, event cameras still have a good performance in backlight and dim light conditions where conventional optical cameras fail. This research offers a novel possibility for detection under intricate lighting and motion conditions, emphasizing the superior benefits of event cameras in the realm of space object detection.

Funder

National Natural Science Foundation of China

Publisher

PeerJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3