Predicting energy use in construction using Extreme Gradient Boosting

Author:

Han Jiaming1ORCID,Shu Kunxin1,Wang Zhenyu2

Affiliation:

1. Department of Computing, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR

2. School of Mechanical Engineering, Hefei University of Technology, Anhui, China

Abstract

Annual increases in global energy consumption are an unavoidable consequence of a growing global economy and population. Among different sectors, the construction industry consumes an average of 20.1% of the world’s total energy. Therefore, exploring methods for estimating the amount of energy used is critical. There are several approaches that have been developed to address this issue. The proposed methods are expected to contribute to energy savings as well as reduce the risks of global warming. There are diverse types of computational approaches to predicting energy use. These existing approaches belong to the statistics-based, engineering-based, and machine learning-based categories. Machine learning-based frameworks showed better performance compared to these other approaches. In our study, we proposed using Extreme Gradient Boosting (XGB), a tree-based ensemble learning algorithm, to tackle the issue. We used a dataset containing energy consumption hourly recorded in an office building in Shanghai, China, from January 1, 2015, to December 31, 2016. The experimental results demonstrated that the XGB model developed using both historical and date features worked better than those developed using only one type of feature. The best-performing model achieved RMSE and MAPE values of 109.00 and 0.24, respectively.

Publisher

PeerJ

Subject

General Computer Science

Reference49 articles.

1. A review on applications of ANN and SVM for building electrical energy consumption forecasting;Ahmad;Renewable and Sustainable Energy Reviews,2014

2. Annual electricity consumption forecasting by neural network in high energy consuming industrial sectors;Azadeh;Energy Conversion and Management,2008

3. Civil engineering grand challenges: opportunities for data sensing, information analysis, and knowledge discovery;Becerik-Gerber;Journal of Computing in Civil Engineering,2014

4. Bagging predictors;Breiman;Machine Learning,1996

5. Random forests;Breiman;Machine Learning,2001

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3