Affiliation:
1. Department of Computing, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR
2. School of Mechanical Engineering, Hefei University of Technology, Anhui, China
Abstract
Annual increases in global energy consumption are an unavoidable consequence of a growing global economy and population. Among different sectors, the construction industry consumes an average of 20.1% of the world’s total energy. Therefore, exploring methods for estimating the amount of energy used is critical. There are several approaches that have been developed to address this issue. The proposed methods are expected to contribute to energy savings as well as reduce the risks of global warming. There are diverse types of computational approaches to predicting energy use. These existing approaches belong to the statistics-based, engineering-based, and machine learning-based categories. Machine learning-based frameworks showed better performance compared to these other approaches. In our study, we proposed using Extreme Gradient Boosting (XGB), a tree-based ensemble learning algorithm, to tackle the issue. We used a dataset containing energy consumption hourly recorded in an office building in Shanghai, China, from January 1, 2015, to December 31, 2016. The experimental results demonstrated that the XGB model developed using both historical and date features worked better than those developed using only one type of feature. The best-performing model achieved RMSE and MAPE values of 109.00 and 0.24, respectively.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献