GRNsight: a web application and service for visualizing models of small- to medium-scale gene regulatory networks

Author:

Dahlquist Kam D.1ORCID,Dionisio John David N.2,Fitzpatrick Ben G.3,Anguiano Nicole A.2,Varshneya Anindita1,Southwick Britain J.2,Samdarshi Mihir1

Affiliation:

1. Department of Biology, Loyola Marymount University, Los Angeles, California, United States

2. Department of Electrical Engineering and Computer Science, Loyola Marymount University, Los Angeles, California, United States

3. Department of Mathematics, Loyola Marymount University, Los Angeles, California, United States

Abstract

GRNsight is a web application and service for visualizing models of gene regulatory networks (GRNs). A gene regulatory network (GRN) consists of genes, transcription factors, and the regulatory connections between them which govern the level of expression of mRNA and protein from genes. The original motivation came from our efforts to perform parameter estimation and forward simulation of the dynamics of a differential equations model of a small GRN with 21 nodes and 31 edges. We wanted a quick and easy way to visualize the weight parameters from the model which represent the direction and magnitude of the influence of a transcription factor on its target gene, so we created GRNsight. GRNsight automatically lays out either an unweighted or weighted network graph based on an Excel spreadsheet containing an adjacency matrix where regulators are named in the columns and target genes in the rows, a Simple Interaction Format (SIF) text file, or a GraphML XML file. When a user uploads an input file specifying an unweighted network, GRNsight automatically lays out the graph using black lines and pointed arrowheads. For a weighted network, GRNsight uses pointed and blunt arrowheads, and colors the edges and adjusts their thicknesses based on the sign (positive for activation or negative for repression) and magnitude of the weight parameter. GRNsight is written in JavaScript, with diagrams facilitated by D3.js, a data visualization library. Node.js and the Express framework handle server-side functions. GRNsight’s diagrams are based on D3.js’s force graph layout algorithm, which was then extensively customized to support the specific needs of GRNs. Nodes are rectangular and support gene labels of up to 12 characters. The edges are arcs, which become straight lines when the nodes are close together. Self-regulatory edges are indicated by a loop. When a user mouses over an edge, the numerical value of the weight parameter is displayed. Visualizations can be modified by sliders that adjust the force graph layout parameters and through manual node dragging. GRNsight is best-suited for visualizing networks of fewer than 35 nodes and 70 edges, although it accepts networks of up to 75 nodes or 150 edges. GRNsight has general applicability for displaying any small, unweighted or weighted network with directed edges for systems biology or other application domains. GRNsight serves as an example of following and teaching best practices for scientific computing and complying with FAIR principles, using an open and test-driven development model with rigorous documentation of requirements and issues on GitHub. An exhaustive unit testing framework using Mocha and the Chai assertion library consists of around 160 automated unit tests that examine nearly 530 test files to ensure that the program is running as expected. The GRNsight application (http://dondi.github.io/GRNsight/) and code (https://github.com/dondi/GRNsight) are available under the open source BSD license.

Funder

NSF (K.D.D., B.G.F.)

Kadner-Pitts Research Grant (K.D.D.)

Loyola Marymount University Summer Undergraduate Research Program (A.V.)

Loyola Marymount University Rains Research Assistant Program (N.A.A.)

Publisher

PeerJ

Subject

General Computer Science

Reference44 articles.

1. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update;Afgan;Nucleic Acids Research,2016

2. Gephi: an open source software for exploring and manipulating networks;Bastian,2009

3. Target hub proteins serve as master regulators of development in yeast;Borneman;Genes & Development,2006

4. D3: data-driven documents;Bostock;IEEE Transactions on Visualization and Computer Graphics,2011

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Gene Regulatory Networks of Epidermal and Neural Fate Choice in a Chordate;Molecular Biology and Evolution;2022-03-11

2. On the Adjacency-Jacobsthal numbers;Communications in Algebra;2019-05-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3