Wireless optimization for sensor networks using IoT-based clustering and routing algorithms

Author:

Kumar Arun1,Gaur Nishant2,Nanthaamornphong Aziz3

Affiliation:

1. Department of Electronics and Communication Engineering, New Horizon College of Engineering, Bengaluru, India

2. Department of Physics, JECRC University, Jaipur, India

3. College of Computing, Prince of Songkla University, Kathu, Phuket, Thailand

Abstract

Wireless sensor networks (WSN) are among the most prominent current technologies. Its popularity has skyrocketed because of its capacity to operate in difficult situations. The WSN market encompasses various industries, including building automation, security networks, healthcare systems, logistics, and military operations. Therefore, increasing the energy efficiency of these networks is of utmost importance. Hierarchical topology, which typically uses a clustering methodology, is one of the most well-known methods for WSN energy optimization. To achieve energy efficiency in WSN, hierarchical topology low-energy adaptive clustering hierarchy (LEACH) was first introduced, and this served as the foundation. However, conventional LEACH has several limitations, which have led to extensive research into improving LEACH’s efficacy in its current form. The use of particular algorithms and strategies to enhance the functionality of the conventional LEACH protocol forms the basis of ongoing efforts. Utilizing this enhanced LEACH, performance in terms of throughput and network life may be enhanced by concentrating on elements such as cluster head formation and transmission energy consumption. The enhanced LEACH algorithm demonstrates significant improvements in both throughput and network lifetime compared with conventional LEACH. Through rigorous experimentation, it was found that the enhanced algorithm increases the throughput by 25% on average, which is attributed to its dynamic clustering and optimized routing strategies. Furthermore, the network lifetime is extended by approximately 30%, primarily because of enhanced energy efficiency through adaptive clustering and transmission power control.

Publisher

PeerJ

Reference26 articles.

1. Low energy adaptive clustering hierarchy (leach) protocol: Simulation and analysis using matlab;Agarwal,2018

2. Routing in wireless sensor networks using optimization techniques: a survey;Al Aghbari;Wireless Personal Communications,2020

3. Towards improved clustering and routing protocol for wireless sensor networks;Alharbi;EURASIP Journal on Wireless Communications and Networking,2021

4. Quantum-inspired moth flame optimizer enhanced deep learning for automated rice variety classification;Alshahrani;IEEE Access,2023

5. Securing the iot-based wireless sensor networks in 5g and beyond;Ambika,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3