A novel hybrid face mask detection approach using Transformer and convolutional neural network models

Author:

Al-Sarrar Haifa M.,Al-Baity Heyam H.ORCID

Abstract

Face and face mask detection are one of the most popular topics in computer vision literature. Face mask detection refers to the detection of people’s faces in digital images and determining whether they are wearing a face mask. It can be of great benefit in different domains by ensuring public safety through the monitoring of face masks. Current research details a range of proposed face mask detection models, but most of them are mainly based on convolutional neural network models. These models have some drawbacks, such as their not being robust enough for low quality images and their being unable to capture long-range dependencies. These shortcomings can be overcome using transformer neural networks. Transformer is a type of deep learning that is based on the self-attention mechanism, and its strong capabilities have attracted the attention of computer vision researchers who apply this advanced neural network architecture to visual data as it can handle long-range dependencies between input sequence elements. In this study, we developed an automatic hybrid face mask detection model that is a combination of a transformer neural network and a convolutional neural network models which can be used to detect and determine whether people are wearing face masks. The proposed hybrid model’s performance was evaluated and compared to other state-of-the-art face mask detection models, and the experimental results proved the proposed model’s ability to achieve a highest average precision of 89.4% with an execution time of 2.8 s. Thus, the proposed hybrid model is fit for a practical, real-time trial and can contribute towards public healthcare in terms of infectious disease control.

Funder

King Saud University

Publisher

PeerJ

Subject

General Computer Science

Reference40 articles.

1. Towards lightweight convolutional neural networks for object detection;Anisimov,2017

2. The database of faces;AT&T Laboratories,1994

3. How to correctly detect face-masks for COVID-19 from visual information?;Batagelj;Applied Sciences,2021

4. End-to-end object detection with transformers;Carion,2020

5. Detect faces and determine whether people are wearing mask;Chiang,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3