Multi-grained alignment method based on stable topics in cross-social networks

Author:

Lu Jing,Gai Qikai

Abstract

The user alignment of cross-social networks is divided into user and group alignments, respectively. Obtaining users’ full features is difficult due to social network privacy protection policies in user alignment mode. In contrast, the alignment accuracy is low due to the large number of edge users in the group alignment mode. To resolve this issue, First, stable topics are obtained from user-generated content (UGC) based on embedded topic jitter time, and the weight of user edges is updated by using vector distances. An improved Louvain algorithm, called Stable Topic-Louvain (ST-L), is designed to accomplish multi-level community detection without predetermined tags. It aims to obtain fuzzy topic features of the community and finalize the community alignment across social networks. Furthermore, iterative alignment is executed from coarse-grained communities to fine-grained sub-communities until user-level alignment occurs. The process can be terminated at any layer to achieve multi-granularity alignment, which resolves the low accuracy issue of edge user alignment at a single granularity and improves the accuracy of user alignment. The effectiveness of the proposed method is shown by implementing real datasets.

Funder

University of Shanghai for Science & Technology Natural Science Foundation Cultivation Project

Publisher

PeerJ

Reference28 articles.

1. Fast unfolding of communities in large networks;Blondel;Journal of Statistical Mechanics: Theory and Experiment,2008

2. User identity linkage across social media via attentive time-aware user modeling;Chen;IEEE Transactions on Multimedia,2020

3. Community-based network alignment for large attributed network;Chen,2017

4. A deep learning framework for self-evolving hierarchical community detection;Ding,2021

5. UGCLink: user identity linkage by modeling user generated contents with knowledge distillation;Gao,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3