RehaBEElitation: the architecture and organization of a serious game to evaluate motor signs in Parkinson’s disease

Author:

Cardoso Mendes Luanne12,Abreu Rosa de Sá Angela3,Alves Marques Isabela12,Morère Yann2,de Oliveira Andrade Adriano1

Affiliation:

1. Centre for Innovation and Technology Assessment in Health (NIATS), Faculty of Electrical Engineering, Federal University of Uberlândia, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil

2. Laboratoire de Conception, d’Optimisation et de Modélisation des Systèmes (LCOMS), Université de Lorraine, Metz, Moselle, France

3. Assistive Technology Laboratory, Faculty of Electrical Engineering (NTA), Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil

Abstract

Background The use of serious games (SG) has received increasing attention in health care, and can be applied for both rehabilitation and evaluation of motor signs of several diseases, such as Parkinson’s disease (PD). However, the use of these instruments in clinical practice is poorly observed, since there is a scarcity of games that, during their development process, simultaneously address issues of usability and architectural design, contributing to the non-satisfaction of the actual needs of professionals and patients. Thus, this study aimed to present the architecture and usability evaluation at the design stage of a serious game, so-called RehaBEElitation, and assess the accessibility of the game. Methods The game was created by a multidisciplinary team with experience in game development and PD, taking into consideration design guidelines for the development of SG. The user must control the movements of a bee in a 3D environment. The game tasks were designed to mimic the following movements found in the gold-standard method tool—Movement Disorder Society-Unified Parkinson’s Disease Rating Scale (MDS-UPDRS)—for the assessment of individuals with PD: hand opening and closing, hand extension and flexion, hand adduction and abduction, finger tapping, and forearm supination and pronation. The user interacts with the game using a wearable interface device that embeds inertial and tactile sensors. The architecture of RehaBEElitation was detailed using the business process model (BPM) notation and the usability of the architecture was evaluated using the Nielsen-Shneiderman heuristics. Game accessibility was evaluated by comparing the overall scores of each phase between 15 healthy participants and 15 PD patients. The PD group interacted with the game in both the ON and OFF states. Results The system was modularized in order to implement parallel, simultaneous and independent programming at different levels, requiring less computational effort and enabling fluidity between the game and the control of the interface elements in real time. The developed architecture allows the inclusion of new elements for patient status monitoring, extending the functionality of the tool without changing its fundamental characteristics. The heuristic evaluation contemplated all the 14 heuristics proposed by Shneiderman, which enabled the implementation of improvements in the game. The evaluation of accessibility revealed no statistically significant differences (p < 0.05) between groups, except for the healthy group and the PD group in the OFF state of medication during Phase 3 of the game. Conclusions The proposed architecture was presented in order to facilitate the reproduction of the system and extend its application to other scenarios. In the same way, the heuristic evaluation performed can serve as a contribution to the advancement of the SG design for PD. The accessibility evaluation revealed that the game is accessible to individuals with PD.

Funder

National Council for Scientific and Technological Development

Coordination for the Improvement of Higher Education Personnel

Foundation for Research Support of the State of Minas Gerais

Program CAPES/COFECUB

Publisher

PeerJ

Subject

General Computer Science

Reference56 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Objective assessment of bradykinesia in Parkinson's disease using a serious game;2023-12-06

2. Objective assessment of tremor in Parkinson's disease using the RehaBEElitation serious game;2023 IEEE International Conference on Metrology for eXtended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE);2023-10-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3