Adaptive divergence for rapid adversarial optimization

Author:

Borisyak Maxim1,Gaintseva Tatiana1,Ustyuzhanin Andrey12

Affiliation:

1. Laboratory of Methods for Big Data Analysis, National Research University Higher School of Economics, Moscow, Russia

2. Physics Department, Imperial College, London, United Kingdom

Abstract

Adversarial Optimization provides a reliable, practical way to match two implicitly defined distributions, one of which is typically represented by a sample of real data, and the other is represented by a parameterized generator. Matching of the distributions is achieved by minimizing a divergence between these distribution, and estimation of the divergence involves a secondary optimization task, which, typically, requires training a model to discriminate between these distributions. The choice of the model has its trade-off: high-capacity models provide good estimations of the divergence, but, generally, require large sample sizes to be properly trained. In contrast, low-capacity models tend to require fewer samples for training; however, they might provide biased estimations. Computational costs of Adversarial Optimization becomes significant when sampling from the generator is expensive. One of the practical examples of such settings is fine-tuning parameters of complex computer simulations. In this work, we introduce a novel family of divergences that enables faster optimization convergence measured by the number of samples drawn from the generator. The variation of the underlying discriminator model capacity during optimization leads to a significant speed-up. The proposed divergence family suggests using low-capacity models to compare distant distributions (typically, at early optimization steps), and the capacity gradually grows as the distributions become closer to each other. Thus, it allows for a significant acceleration of the initial stages of optimization. This acceleration was demonstrated on two fine-tuning problems involving Pythia event generator and two of the most popular black-box optimization algorithms: Bayesian Optimization and Variational Optimization. Experiments show that, given the same budget, adaptive divergences yield results up to an order of magnitude closer to the optimum than Jensen-Shannon divergence. While we consider physics-related simulations, adaptive divergences can be applied to any stochastic simulation.

Funder

Russian Science Foundation

Publisher

PeerJ

Subject

General Computer Science

Reference33 articles.

1. Recent developments in Geant4;Allison;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,2016

2. Wasserstein gan;Arjovsky,2017

3. Efficient probabilistic inference in the quest for physics beyond the standard model;Baydin,2019

4. The cramer distance as a solution to biased wasserstein gradients;Bellemare,2017

5. StarGAN: unified generative adversarial networks for multi-domain image-to-image translation;Choi,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3