Dataset construction method of cross-lingual summarization based on filtering and text augmentation

Author:

Pan Hangyu1,Xi Yaoyi1,Wang Ling1,Nan Yu1,Su Zhizhong1,Cao Rong1

Affiliation:

1. State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou, China

Abstract

Existing cross-lingual summarization (CLS) datasets consist of inconsistent sample quality and low scale. To address these problems, we propose a method that jointly supervises quality and scale to build CLS datasets. In terms of quality supervision, the method adopts a multi-strategy filtering algorithm to remove low-quality samples of monolingual summarization (MS) from the perspectives of character and semantics, thereby improving the quality of the MS dataset. In terms of scale supervision, the method adopts a text augmentation algorithm based on the pretrained model to increase the size of CLS datasets with quality assurance. This method was used to build an English-Chinese CLS dataset and evaluate it with a reasonable data quality evaluation framework. The evaluation results show that the dataset is of good quality and large size. These outcomes show that the proposed method may comprehensively improve quality and scale, thereby resulting in a high-quality and large-scale CLS dataset at a lower cost.

Funder

National Social Science Foundation of China

Publisher

PeerJ

Subject

General Computer Science

Reference60 articles.

1. Not enough data? Deep learning to the rescue!;Anaby-Tavor,2019

2. Cross-lingual abstractive summarization with limited parallel resources;Bai,2021

3. Bridging the gap: cross-lingual summarization with compression rate;Bai,2021

4. The effects of data quality on machine learning performance;Budach,2022

5. Jointly learning to align and summarize for neural cross-lingual summarization;Cao,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3