Real-time path planning for autonomous vehicle off-road driving

Author:

Ramirez-Robles Ethery,Starostenko Oleg,Alarcon-Aquino Vicente

Abstract

Background Autonomous driving is a growing research area that brings benefits in science, economy, and society. Although there are several studies in this area, currently there is no a fully autonomous vehicle, particularly, for off-road navigation. Autonomous vehicle (AV) navigation is a complex process based on application of multiple technologies and algorithms for data acquisition, management and understanding. Particularly, a self-driving assistance system supports key functionalities such as sensing and terrain perception, real time vehicle mapping and localization, path prediction and actuation, communication and safety measures, among others. Methods In this work, an original approach for vehicle autonomous driving in off-road environments that combines semantic segmentation of video frames and subsequent real-time route planning is proposed. To check the relevance of the proposal, a modular framework for assistive driving in off-road scenarios oriented to resource-constrained devices has been designed. In the scene perception module, a deep neural network is used to segment Red-Green-Blue (RGB) images obtained from camera. The second traversability module fuses Light Detection And Ranging (LiDAR) point clouds with the results of segmentation to create a binary occupancy grid map to provide scene understanding during autonomous navigation. Finally, the last module, based on the Rapidly-exploring Random Tree (RRT) algorithm, predicts a path. The Freiburg Forest Dataset (FFD) and RELLIS-3D dataset were used to assess the performance of the proposed approach. The theoretical contributions of this article consist of the original approach for image semantic segmentation fitted to off-road driving scenarios, as well as adapting the shortest route searching A* and RRT algorithms to AV path planning. Results The reported results are very promising and show several advantages compared to previously reported solutions. The segmentation precision achieves 85.9% for FFD and 79.5% for RELLIS-3D including the most frequent semantic classes. While compared to other approaches, the proposed approach is faster regarding computational time for path planning.

Funder

CONACYT

Publisher

PeerJ

Reference48 articles.

1. SegNet: a deep convolutional encoder-decoder architecture for image segmentation;Badrinarayanan;IEEE Transactions on Pattern Analysis and Machine Intelligence,2017

2. Path planning for robotic delivery systems;Brooks,2022

3. Self-supervised terrain classification for planetary surface exploration rovers;Brooks;Journal of Field Robotics,2012

4. A path planning method of anti-jamming ability improvement for autonomous vehicle navigating in off-road environments;Chen;Industrial Robot,2017

5. Image feature based machine learning approach for road terrain classification;Chen,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3