An adaptive cryptosystem on a Finite Field

Author:

Bhowmik Awnon1,Menon Unnikrishnan2

Affiliation:

1. Department of Mathematics, The City College of New York, New York, NY, United States of America

2. Department of Electrical and Electronics Engineering, Vellore Institute of Technology University, Vellore, Tamil Nadu, India

Abstract

Owing to mathematical theory and computational power evolution, modern cryptosystems demand ingenious trapdoor functions as their foundation to extend the gap between an enthusiastic interceptor and sensitive information. This paper introduces an adaptive block encryption scheme. This system is based on product, exponent, and modulo operation on a finite field. At the heart of this algorithm lies an innovative and robust trapdoor function that operates in the Galois Field and is responsible for the superior speed and security offered by it. Prime number theorem plays a fundamental role in this system, to keep unwelcome adversaries at bay. This is a self-adjusting cryptosystem that autonomously optimizes the system parameters thereby reducing effort on the user’s side while enhancing the level of security. This paper provides an extensive analysis of a few notable attributes of this cryptosystem such as its exponential rise in security with an increase in the length of plaintext while simultaneously ensuring that the operations are carried out in feasible runtime. Additionally, an experimental analysis is also performed to study the trends and relations between the cryptosystem parameters, including a few edge cases.

Publisher

PeerJ

Subject

General Computer Science

Reference30 articles.

1. A practical analysis of the fermat factorization and pollard rho method for factoring integers;Aminudin;Lontar Komputer: Jurnal Ilmiah Teknologi Informasi,2021

2. Galois field in cryptography;Benvenuto;University of Washington,2012

3. Adaptive cryptosystem finite field;Bhowmik,2020

4. The rsa cryptosystem: history, algorithm, primes;Calderbank,2007

5. Securing emergent behaviour in swarm robotics;Chen,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3