Natural differential privacy—a perspective on protection guarantees

Author:

Altman Micah1ORCID,Cohen Aloni2

Affiliation:

1. CREOS, MIT Libraries, Massachusetts Institute of Technology, Cambridge, MA, United States

2. Computer Science, University of Chicago, Chicago, IL, USA

Abstract

We introduce “Natural” differential privacy (NDP)—which utilizes features of existing hardware architecture to implement differentially private computations. We show that NDP both guarantees strong bounds on privacy loss and constitutes a practical exception to no-free-lunch theorems on privacy. We describe how NDP can be efficiently implemented and how it aligns with recognized privacy principles and frameworks. We discuss the importance of formal protection guarantees and the relationship between formal and substantive protections.

Publisher

PeerJ

Subject

General Computer Science

Reference45 articles.

1. Publishing: credit where credit is due;Allen;Nature,2014

2. Practical approaches to big data privacy over time;Altman;International Data Privacy Law,2018

3. Towards a modern approach to privacy-aware government data releases;Altman;Berkeley Technology Law Journal,2015

4. A survey of timing channels and countermeasures;Biswas;ACM Computing Surveys (CSUR),2017

5. A critical review on the use (and misuse) of differential privacy in machine learning;Blanco-Justicia;ArXiv preprint,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3