Data-based intervention approach for Complexity-Causality measure

Author:

Kathpalia Aditi1,Nagaraj Nithin1

Affiliation:

1. Consciousness Studies Programme, National Institute of Advanced Studies, Bengaluru, Karnataka, India

Abstract

Causality testing methods are being widely used in various disciplines of science. Model-free methods for causality estimation are very useful, as the underlying model generating the data is often unknown. However, existing model-free/data-driven measures assume separability of cause and effect at the level of individual samples of measurements and unlike model-based methods do not perform any intervention to learn causal relationships. These measures can thus only capture causality which is by the associational occurrence of ‘cause’ and ‘effect’ between well separated samples. In real-world processes, often ‘cause’ and ‘effect’ are inherently inseparable or become inseparable in the acquired measurements. We propose a novel measure that uses an adaptive interventional scheme to capture causality which is not merely associational. The scheme is based on characterizing complexities associated with the dynamical evolution of processes on short windows of measurements. The formulated measure, Compression-Complexity Causality is rigorously tested on simulated and real datasets and its performance is compared with that of existing measures such as Granger Causality and Transfer Entropy. The proposed measure is robust to the presence of noise, long-term memory, filtering and decimation, low temporal resolution (including aliasing), non-uniform sampling, finite length signals and presence of common driving variables. Our measure outperforms existing state-of-the-art measures, establishing itself as an effective tool for causality testing in real world applications.

Funder

Tata Trusts and Cognitive Science Research Initiative

Publisher

PeerJ

Subject

General Computer Science

Reference40 articles.

1. Aging and cardiovascular complexity: effect of the length of RR tachograms;Balasubramanian;PeerJ,2016

2. The MVGC multivariate Granger causality toolbox: a new approach to Granger-causal inference;Barnett;Journal of Neuroscience Methods,2014

3. Granger causality is designed to measure effect, not mechanism;Barrett;Frontiers in Neuroinformatics,2013

4. Finding the direction of disturbance propagation in a chemical process using transfer entropy;Bauer;IEEE Transactions on Control Systems Technology,2007

5. Stock market integration: Granger causality testing with respect to nonsynchronous trading effects;Baumöhl;Czech Journal of Economics & Finance,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3