A lightweight segmentation network for endoscopic surgical instruments based on edge refinement and efficient self-attention

Author:

Zhou Mengyu12,Han Xiaoxiang2ORCID,Liu Zhoujin1,Chen Yitong1,Sun Liping13

Affiliation:

1. School of Medical Instruments, Shanghai University of Medicine & Health Sciences, Shanghai, P.R.China

2. School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China

3. School of Information Science and Technology, Fudan University, Shanghai, China

Abstract

In robot-assisted surgical systems, surgical instrument segmentation is a critical task that provides important information for surgeons to make informed decisions and ensure surgical safety. However, current mainstream models often lack precise segmentation edges and suffer from an excess of parameters, rendering their deployment challenging. To address these issues, this article proposes a lightweight semantic segmentation model based on edge refinement and efficient self-attention. The proposed model utilizes a lightweight densely connected network for feature extraction, which is able to extract high-quality semantic information with fewer parameters. The decoder combines a feature pyramid module with an efficient criss-cross self-attention module. This fusion integrates multi-scale data, strengthens focus on surgical instrument details, and enhances edge segmentation accuracy. To train and evaluate the proposed model, the authors developed a private dataset of endoscopic surgical instruments. It containing 1,406 images for training, 469 images for validation and 469 images for testing. The proposed model performs well on this dataset with only 466 K parameters, achieving a mean Intersection over Union (mIoU) of 97.11%. In addition, the model was trained on public datasets Kvasir-instrument and Endovis2017. Excellent results of 93.24% and 95.83% were achieved on the indicator mIoU, respectively. The superiority and effectiveness of the method are proved. Experimental results show that the proposed model has lower parameters and higher accuracy than other state-of-the-art models. The proposed model thus lays the foundation for further research in the field of surgical instrument segmentation.

Funder

National Key R&D Program

Shanghai University of Medicine & Health Sciences

The National Key R&D Program

Publisher

PeerJ

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3