Models of similarity in complex networks

Author:

Shvydun SergeyORCID

Abstract

The analysis of networks describing many social, economic, technological, biological and other systems has attracted a lot of attention last decades. Since most of these complex systems evolve over time, there is a need to investigate the changes, which appear in the system, in order to assess the sustainability of the network and to identify stable periods. In the literature, there have been developed a large number of models that measure the similarity among the networks. There also exist some surveys, which consider a limited number of similarity measures and then perform their correlation analysis, discuss their properties or assess their performances on synthetic benchmarks or real networks. The aim of the article is to extend these studies. The article considers 39 graph distance measures and compares them on simple graphs, random graph models and real networks. The author also evaluates the performance of the models in order to identify which of them can be applied to large networks. The results of the study reveal some important aspects of existing similarity models and provide a better understanding of their advantages and disadvantages. The major finding of the work is that many graph similarity measures of different nature are well correlated and that some comprehensive methods are well agreed with simple models. Such information can be used for the choice of appropriate similarity measure as well as for further development of new models for similarity assessment in network structures.

Funder

Basic Research Program at the National Research University Higher School of Economics

Publisher

PeerJ

Subject

General Computer Science

Reference49 articles.

1. Power in network structures;Aleskerov,2017

2. Stability and similarity in networks based on topology and nodes importance;Aleskerov,2019

3. New Centrality Measures in Networks

4. An information-theoretic, all-scales approach to comparing networks;Bagrow;Applied Network Science,2019

5. Structural distance and evolutionary relationship of networks;Banerjee;Biosystems,2012

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3