A dual nonsubsampled contourlet network for synthesis images and infrared thermal images denoising

Author:

Xu Zhendong1,Zhao Hongdan1,Zheng Yu1,Guo Hongbo1,Li Shengyang1,Lyu Zhiyu2

Affiliation:

1. State Grib Jilin Electric Power Co., Ltd, Liaoyuan Power Supply Company, Liaoyuan, China

2. School of Automation Engineering, Northeast Electric Power University, Jilin, China

Abstract

The most direct way to find the electrical switchgear fault is to use infrared thermal imaging technology for temperature measurement. However, infrared thermal imaging images are usually polluted by noise, and there are problems such as low contrast and blurred edges. To solve these problems, this article proposes a dual convolutional neural network model based on nonsubsampled contourlet transform (NSCT). First, the overall structure of the model is made wider by combining the two networks. Compared with the deeper convolutional neural network, the dual convolutional neural network (CNN) improves the denoising performance without increasing the computational cost too much. Secondly, the model uses NSCT and inverse NSCT to obtain more texture information and avoid the gridding effect. It achieves a good balance between noise reduction performance and detail retention. A large number of simulation experiments show that the model has the ability to deal with synthetic noise and real noise, which has high practical value.

Funder

State Grid Jilin Electric Power Co., LTD. Technology

Publisher

PeerJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3