An enhanced Genetic Folding algorithm for prostate and breast cancer detection

Author:

Mezher Mohammad A.1,Altamimi Almothana2,Altamimi Ruhaifa3

Affiliation:

1. College of Computing, Fahad Bin Sultan University, Tabuk, Saudi Arabia

2. Department of Clinical Medicine and Surgery, Università degli Studi di Napoli Federico, di Napoli Federico, Italy

3. Department of Business and Data Analytics, University of Huddersfield, Huddersfield, United Kingdom

Abstract

Cancer’s genomic complexity is gradually increasing as we learn more about it. Genomic classification of various cancers is crucial in providing oncologists with vital information for targeted therapy. Thus, it becomes more pertinent to address issues of patient genomic classification. Prostate cancer is a cancer subtype that exhibits extreme heterogeneity. Prostate cancer contributes to 7.3% of new cancer cases worldwide, with a high prevalence in males. Breast cancer is the most common type of cancer in women and the second most significant cause of death from cancer in women. Breast cancer is caused by abnormal cell growth in the breast tissue, generally referred to as a tumour. Tumours are not synonymous with cancer; they can be benign (noncancerous), pre-malignant (pre-cancerous), or malignant (cancerous). Fine-needle aspiration (FNA) tests are used to biopsy the breast to diagnose breast cancer. Artificial Intelligence (AI) and machine learning (ML) models are used to diagnose with varying accuracy. In light of this, we used the Genetic Folding (GF) algorithm to predict prostate cancer status in a given dataset. An accuracy of 96% was obtained, thus being the current highest accuracy in prostate cancer diagnosis. The model was also used in breast cancer classification with a proposed pipeline that used exploratory data analysis (EDA), label encoding, feature standardization, feature decomposition, log transformation, detect and remove the outliers with Z-score, and the BAGGINGSVM approach attained a 95.96% accuracy. The accuracy of this model was then assessed using the rate of change of PSA, age, BMI, and filtration by race. We discovered that integrating the rate of change of PSA and age in our model raised the model’s area under the curve (AUC) by 6.8%, whereas BMI and race had no effect. As for breast cancer classification, no features were removed.

Publisher

PeerJ

Subject

General Computer Science

Reference39 articles.

1. Identifying and targeting the cause of cancer is needed to cure cancer;Adjiri;Oncology and Therapy,2016

2. Molecular classification of breast cancer: a retrospective cohort study;Al-thoubaity;Annals of Medicine and Surgery,2019

3. Gene selection in cancer classification using PSO/SVM and GA/SVM hybrid algorithms;Alba,2007

4. Breast cancer;Alkabban,2022

5. MMezher_14_4_2022_ML:Breast Cancer Classification. Kaggle;Anjelito,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing Breast Cancer Prediction with an Advanced K-Nearest Neighbors (KNN) Algorithm Integrated with Feedback Support Mechanism;2023 International Conference on Technology, Engineering, and Computing Applications (ICTECA);2023-12-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3