Visual design of green information in urban environment based on global similarity calculation and multi-dimensional visualization technology

Author:

Wang Junru

Abstract

In recent years, the escalating prevalence of elevated consumption and carbon emissions within urban operations has reached a disconcerting extent. This surge in resource depletion and environmental pollution exerts an adverse influence on the well-being of individuals, while impeding societal progress and hindering the enhancement of overall quality of life. Within the domain of urban environmental design, the integration of visual displays emerges as a superior approach to facilitate the assimilation and analysis of green and low-carbon information. However, urban environmental data usually contains multiple dimensions, so it is a problem to realize the data representation of multiple dimensions while maintaining the correlation and interactivity between data. To surmount the challenge of visualizing such intricate information, this investigation initially employs a sophisticated memory-based clustering algorithm for information extraction, accompanied by a global similarity algorithm that meticulously computes attribute component quantities within specific dimensions of the vector. Furthermore, leveraging the inherent power of Vue’s bidirectional data binding capabilities, the study adopts the esteemed MVVM (Model-View-View-Model) pattern, fostering seamless two-way interaction through the established logical relationship. As a result, the amalgamation of multidimensional visualization technology empowers comprehensive data mining through a captivating visual augmentation. Concurrently, the application of data visualization dimension control delivers tailored displays tailored to green and low-carbon scenarios within urban environmental design. Experimental results impeccably validate the effectiveness of the proposed algorithm, substantiated by a mere 1.77% false alarm rate for data stream difference detection and a clustering difference of 1.34%. The aforementioned algorithm accentuates the efficacy of visual displays, thus engendering a profound synergy between the industrial and supply chains. Moreover, it facilitates the design, production, and utilization of environmentally friendly products and energy sources. This, in turn, serves as a catalyst, propelling the widescale adoption of green and low-carbon practices throughout the entire industrial chain, fueled by the seamless integration of multimedia data.

Publisher

PeerJ

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3