Predicting the satisfiability of Boolean formulas by incorporating gated recurrent unit (GRU) in the Transformer framework

Author:

Chang Wenjing1,Guo Mengyu1,Luo Junwei1

Affiliation:

1. School of Software, Henan Polytechnic University, Jiaozuo, Henan, China

Abstract

The Boolean satisfiability (SAT) problem exhibits different structural features in various domains. Neural network models can be used as more generalized algorithms that can be learned to solve specific problems based on different domain data than traditional rule-based approaches. How to accurately identify these structural features is crucial for neural networks to solve the SAT problem. Currently, learning-based SAT solvers, whether they are end-to-end models or enhancements to traditional heuristic algorithms, have achieved significant progress. In this article, we propose TG-SAT, an end-to-end framework based on Transformer and gated recurrent neural network (GRU) for predicting the satisfiability of SAT problems. TG-SAT can learn the structural features of SAT problems in a weakly supervised environment. To capture the structural information of the SAT problem, we encodes a SAT problem as an undirected graph and integrates GRU into the Transformer structure to update the node embeddings. By computing cross-attention scores between literals and clauses, a weighted representation of nodes is obtained. The model is eventually trained as a classifier to predict the satisfiability of the SAT problem. Experimental results demonstrate that TG-SAT achieves a 2%–5% improvement in accuracy on random 3-SAT problems compared to NeuroSAT. It also outperforms in SR(N), especially in handling more complex SAT problems, where our model achieves higher prediction accuracy.

Funder

The National Natural Science Foundation of Chinaunder

Young Elite Teachers in Henan Province

Doctor Foundation of Henan Polytechnic University

Innovative and Scientifc Research Team of Henan Polvtechnic University

Publisher

PeerJ

Reference33 articles.

1. Learning to solve circuit-SAT: an unsupervised differentiable approach;Amizadeh,2018

2. Machine learning for combinatorial optimization: a methodological tour d’horizon;Bengio;European Journal of Operational Research,2021

3. Graph neural networks and boolean satisfiability;Bünz,2017

4. Learning phrase representations using RNN Encoder–Decoder for statistical machine translation;Cho,2014

5. The complexity of theorem-proving procedures;Cook,1971

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3