PSA-HWT: handwritten font generation based on pyramid squeeze attention

Author:

Zhao Hong1ORCID,Huang Jinhai1,Li Wengai1,Chang Zhaobin2,Wang Weijie1

Affiliation:

1. School of Computer and Communication, Lanzhou University of Technology, Lanzhou, Gansu, China

2. School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu, China

Abstract

The generator, which combines convolutional neural network (CNN) and Transformer as its core modules, serves as the primary model for the handwriting font generation network and demonstrates effective performance. However, there are still problems with insufficient feature extraction in the overall structure of the font, the thickness of strokes, and the curvature of strokes, resulting in subpar detail in the generated fonts. To solve the problems, we propose a method for constructing a handwritten font generation model based on Pyramid Squeeze Attention, called PSA-HWT. The PSA-HWT model is divided into two parts: an encoder and a decoder. In the encoder, a multi-branch structure is used to extract spatial information at different scales from the input feature map, achieving multi-scale feature extraction. This helps better capture the semantic information and global structure of the font, aiding the generation model in understanding fine-grained features such as the shape, thickness, and curvature of the font. In the decoder, it uses a self-attention mechanism to capture dependencies across various positions in the input sequence. This helps to better understand the relationship between the generated strokes or characters and the handwritten font being generated, ensuring the overall coherence of the generated handwritten text. The experimental results on the IAM dataset demonstrate that PSA-HWT achieves a 16.35% decrease in Fréchet inception distance (FID) score and a 13.09% decrease in Geometry Score (GS) compared to the current advanced methods. This indicates that PSA-HWT generates handwritten fonts of higher quality, making it more practically valuable.

Funder

National Science Foundation of China

Publisher

PeerJ

Reference25 articles.

1. Understanding of a convolutional neural network;Albawi,2017

2. Adversarial generation of handwritten text images conditioned on sequences;Alonso,2019

3. Handwriting transformers;Bhunia,2021

4. Demystifying mmd gans;Bińkowski;ArXiv,2018

5. Text and style conditioned gan for generation of offline handwriting lines;Davis;ArXiv,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3