Enhanced analysis of large-scale news text data using the bidirectional-Kmeans-LSTM-CNN model

Author:

Zeng Qingxiang1

Affiliation:

1. College of Humanities and Media, Hubei University of Science and Technology, Xianning, Hubei, China

Abstract

Traditional methods may be inefficient when processing large-scale data in the field of text mining, often struggling to identify and cluster relevant information accurately and efficiently. Additionally, capturing nuanced sentiment and emotional context within news text is challenging with conventional techniques. To address these issues, this article introduces an improved bidirectional-Kmeans-long short-term memory network-convolutional neural network (BiK-LSTM-CNN) model that incorporates emotional semantic analysis for high-dimensional news text visual extraction and media hotspot mining. The BiK-LSTM-CNN model comprises four modules: news text preprocessing, news text clustering, sentiment semantic analysis, and the BiK-LSTM-CNN model itself. By combining these components, the model effectively identifies common features within the input data, clusters similar news articles, and accurately analyzes the emotional semantics of the text. This comprehensive approach enhances both the accuracy and efficiency of visual extraction and hotspot mining. Experimental results demonstrate that compared to models such as Transformer, AdvLSTM, and NewRNN, BiK-LSTM-CNN achieves improvements in macro accuracy by 0.50%, 0.91%, and 1.34%, respectively. Similarly, macro recall rates increase by 0.51%, 1.24%, and 1.26%, while macro F1 scores improve by 0.52%, 1.23%, and 1.92%. Additionally, the BiK-LSTM-CNN model shows significant improvements in time efficiency, further establishing its potential as a more effective approach for processing and analyzing large-scale text data

Publisher

PeerJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3