LFC-UNet: learned lossless medical image fast compression with U-Net

Author:

Liao Hengrui1,Li Yue1

Affiliation:

1. School of Computer, University of South China, Hengyang, Hunan, China

Abstract

In the field of medicine, the rapid advancement of medical technology has significantly increased the speed of medical image generation, compelling us to seek efficient methods for image compression. Neural networks, owing to their outstanding image estimation capabilities, have provided new avenues for lossless compression. In recent years, learning-based lossless image compression methods, combining neural network predictions with residuals, have achieved performance comparable to traditional non-learning algorithms. However, existing methods have not taken into account that residuals often concentrate excessively, hindering the neural network’s ability to learn accurate residual probability estimation. To address this issue, this study employs a weighted cross-entropy method to handle the imbalance in residual categories. In terms of network architecture, we introduce skip connections from U-Net to better capture image features, thereby obtaining accurate probability estimates. Furthermore, our framework boasts excellent encoding speed, as the model is able to acquire all residuals and residual probabilities in a single inference pass. The experimental results demonstrate that the proposed method achieves state-of-the-art performance on medical datasets while also offering the fastest processing speed. As illustrated by an instance using head CT data, our approach achieves a compression efficiency of 2.30 bits per pixel, with a processing time of only 0.320 seconds per image.

Publisher

PeerJ

Reference29 articles.

1. JPEG XL next-generation image compression architecture and coding tools;Alakuijala,2019

2. Png (portable network graphics) specification version 1.0;Boutell;Technical report,1997

3. Overview of the versatile video coding (VVC) standard and its applications;Bross;IEEE Transactions on Circuits and Systems for Video Technology,2021

4. Can AI help in screening viral and COVID-19 pneumonia?;Chowdhury;IEEE Access,2020

5. The JPEG2000 still image coding system: an overview;Christopoulos;IEEE Transactions on Consumer Electronics,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3