Affiliation:
1. Department of Intelligent Systems, Faculty of Physics and Applied Informatics, University of Lodz, Lodz, Poland
Abstract
The classification of multi-dimensional patterns is one of the most popular and often most challenging problems of machine learning. That is why some new approaches are being tried, expected to improve existing ones. The article proposes a new technique based on the decision network called self-optimizing neural networks (SONN). The proposed approach works on discretized data. Using a special procedure, we assign a feature vector to each element of the real-valued dataset. Later the feature vectors are analyzed, and decision patterns are created using so-called discriminants. We focus on how these discriminants are used and influence the final classifier prediction. Moreover, we also discuss the influence of the neighborhood topology. In the article, we use three different datasets with different properties. All results obtained by derived methods are compared with those obtained with the well-known support vector machine (SVM) approach. The results prove that the proposed solutions give better results than SVM. We can see that the information obtained from a training set is better generalized, and the final accuracy of the classifier is higher.