Self-optimizing neural network in the classification of real valued data

Author:

Miniak-Górecka Alicja1,Podlaski Krzysztof1,Gwizdałła Tomasz1

Affiliation:

1. Department of Intelligent Systems, Faculty of Physics and Applied Informatics, University of Lodz, Lodz, Poland

Abstract

The classification of multi-dimensional patterns is one of the most popular and often most challenging problems of machine learning. That is why some new approaches are being tried, expected to improve existing ones. The article proposes a new technique based on the decision network called self-optimizing neural networks (SONN). The proposed approach works on discretized data. Using a special procedure, we assign a feature vector to each element of the real-valued dataset. Later the feature vectors are analyzed, and decision patterns are created using so-called discriminants. We focus on how these discriminants are used and influence the final classifier prediction. Moreover, we also discuss the influence of the neighborhood topology. In the article, we use three different datasets with different properties. All results obtained by derived methods are compared with those obtained with the well-known support vector machine (SVM) approach. The results prove that the proposed solutions give better results than SVM. We can see that the information obtained from a training set is better generalized, and the final accuracy of the classifier is higher.

Funder

The University of Lodz

Publisher

PeerJ

Subject

General Computer Science

Reference49 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3