Improvement of deep cross-modal retrieval by generating real-valued representation

Author:

Bhatt Nikita1,Ganatra Amit2ORCID

Affiliation:

1. U & P U. Patel Department of Computer Engineering, Chandubhai S. Patel Institute of Technology, Charotar University of Science and Technology (CHARUSAT), Changa, India

2. Devang Patel Institute of Advance Technology and Research, Charotar University of Science and Technology (CHARUSAT), Changa, India

Abstract

The cross-modal retrieval (CMR) has attracted much attention in the research community due to flexible and comprehensive retrieval. The core challenge in CMR is the heterogeneity gap, which is generated due to different statistical properties of multi-modal data. The most common solution to bridge the heterogeneity gap is representation learning, which generates a common sub-space. In this work, we propose a framework called “Improvement of Deep Cross-Modal Retrieval (IDCMR)”, which generates real-valued representation. The IDCMR preserves both intra-modal and inter-modal similarity. The intra-modal similarity is preserved by selecting an appropriate training model for text and image modality. The inter-modal similarity is preserved by reducing modality-invariance loss. The mean average precision (mAP) is used as a performance measure in the CMR system. Extensive experiments are performed, and results show that IDCMR outperforms over state-of-the-art methods by a margin 4% and 2% relatively with mAP in the text to image and image to text retrieval tasks on MSCOCO and Xmedia dataset respectively.

Publisher

PeerJ

Subject

General Computer Science

Reference26 articles.

1. Applications of convolutional neural networks;Bhandare;International Journal of Computer Science and Information Technologies,2016

2. Collective matrix factorization hashing for multimodal data;Ding,2014

3. Canonical correlation analysis: an overview with application to learning methods;Hardoon;Neural Computation,2004

4. Deep cross-modal hashing;Jiang,2016

5. Learning hash functions for cross-view similarity search;Kumar,2011

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3