A novel clustered-based detection method for shilling attack in private environments

Author:

Gunes Ihsan

Abstract

The topic of privacy-preserving collaborative filtering is gaining more and more attention. Nevertheless, privacy-preserving collaborative filtering techniques are vulnerable to shilling or profile injection assaults. Hence, it is crucial to identify counterfeit profiles in order to achieve total success. Various techniques have been devised to identify and prevent intrusion patterns from infiltrating the system. Nevertheless, these strategies are specifically designed for collaborative filtering algorithms that do not prioritize privacy. There is a scarcity of research on identifying shilling attacks in recommender systems that prioritize privacy. This work presents a novel technique for identifying shilling assaults in privacy-preserving collaborative filtering systems. We employ an ant colony clustering detection method to effectively identify and eliminate fake profiles that are created by six widely recognized shilling attacks on compromised data. The objective of the study is to categorize the fraudulent profiles into a specific cluster and separate this cluster from the system. Empirical experiments are conducted with actual data. The empirical findings demonstrate that the strategy derived from the study effectively eliminates fraudulent profiles in privacy-preserving collaborative filtering.

Publisher

PeerJ

Reference40 articles.

1. Privacy-preserving data mining;Agrawal,2000

2. Trust based recommender system using ant colony for trust computation;Bedi;Expert Systems with Applications,2012

3. Privacy preserving collaborative filtering by distributed mediation;Ben Horin,2021

4. Securing collaborative filtering against malicious attacks through anomaly detection;Bhaumik,2006

5. Maskelenmiş Veriler için Kümeleme-Tabanlı Şilin Atak Tespit Yöntemi;Bilge;Fırat Üniversitesi Mühendislik Bilimleri Dergisi,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3