Diagnostic structure of visual robotic inundated systems with fuzzy clustering membership correlation

Author:

Manoharan Hariprasath1,Selvarajan Shitharth2,Aluvalu Rajanikanth3ORCID,Abdelhaq Maha4,Alsaqour Raed5,Uddin Mueen6

Affiliation:

1. Department of Electronics and Communication Engineering, Panimalar Engineering College, Poonamallee, Chennai, Tamil Nadu, India

2. Department of Computer Science, Kebri Dehar University, Ethiopia

3. Department of IT, Chaitanya Bharathi Institute of Technology, Hyderabad, India

4. Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia

5. Department of Information Technology, College of Computing and Informatics, Saudi Electronic University, Riyadh, Saudi Arabia

6. College of Computing and IT, University of Doha for Science and Technology, Qatar

Abstract

The process of using robotic technology to examine underwater systems is still a difficult undertaking because the majority of automated activities lack network connectivity. Therefore, the suggested approach finds the main hole in undersea systems and fills it using robotic automation. In the predicted model, an analytical framework is created to operate the robot within predetermined areas while maximizing communication ranges. Additionally, a clustering algorithm with a fuzzy membership function is implemented, allowing the robots to advance in accordance with predefined clusters and arrive at their starting place within a predetermined amount of time. A cluster node is connected in each clustered region and provides the central control center with the necessary data. The weights are evenly distributed, and the designed robotic system is installed to prevent an uncontrolled operational state. Five different scenarios are used to test and validate the created model, and in each case, the proposed method is found to be superior to the current methodology in terms of range, energy, density, time periods, and total metrics of operation.

Funder

Princess Nourah bint Abdulrahman University Researchers Supporting Project Number

Publisher

PeerJ

Subject

General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3