Application of multimodal perception scenario construction based on IoT technology in university music teaching

Author:

Gao Yuexia1

Affiliation:

1. Music College, Hubei Normal University, Huangshi, Hubei, China

Abstract

In the contemporary landscape of diversified talent cultivation, enhancing education through intelligent means and expediting the process of talent development stand as paramount pursuits. Within the domain of instrumental music education, beyond merely listening to student performances, it becomes imperative to assess their movements, thus furnishing additional insights to fuel their subsequent growth. This article introduces a novel multimodal information fusion evaluation approach, combining sound information and movement data to address the challenge of evaluating students’ learning status in college music instruction. The proposed framework leverages Internet of Things (IoT) technology, utilizing strategically positioned microphones and cameras within the local area network to accomplish data acquisition. Sound feature extraction is accomplished through the employment of Mel-scale frequency cepstral coefficients (MFCC), while the OpenPose framework in deep learning and convolutional neural networks (CNN) is harnessed to extract action features during students’ performances. Subsequently, the fusion of feature layers is achieved through CNN, culminating in the evaluation of students’ academic efficacy, facilitated by a fully connected network (FCN) and an activation function. In comparison to evaluations conducted by the teacher in the class, this approach achieves an impressive accuracy of 95.7% across the three categories of Excellent, Good, and Failed students’ evaluation processes. This breakthrough offers novel insights for the future of music teaching and interactive class evaluations while expanding the horizons of multimodal information fusion methods’ applications.

Publisher

PeerJ

Subject

General Computer Science

Reference30 articles.

1. Human activity recognition using temporal convolutional neural network architecture;Andrade-Ambriz;Expert Systems with Applications,2022

2. Multi-modal sensor-based assessment of surgical skill using deep neural network;Bao;Medical & Biological Engineering & Computing,2019

3. Intelligent music teaching system with multimodal physiological signal analysis;Chen;International Journal of Human-Computer Interaction,2019

4. Fusing MFCC and LPC features using 1D triplet CNN for speaker recognition in severely degraded audio signals;Chowdhury;IEEE Transactions on Information Forensics and Security,2019

5. Human action recognition using two-stream attention based LSTM networks;Dai;Applied Soft Computing,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3